SUBJECT CODE: MPE-101 SUBJECT NAME: ADVANCED METAL FORMING

Programme: M. Tech. (PE)		PE) L: 3 T: 0 P: 0			
Semester: 1		Teaching Hours: 36			
Theory/Practical: Theory		ory Credits: 3			
Internal Marks: 50		Percentage of Numerical/Design/Programming Problems: 20%			
Externa	al Marks: 100	Duration of End Semester Exam(ESE): 3hr			
Total M	larks: 150	Status: Core Course			
Addition	nal Material Allo	owed in ESE: Scientific Calculator			
On comp	pletion of the co	ourse, the student will have the ability to:			
Sr.	Course Outcor	nes (Cos)			
No.					
1	understand and	d apply the mechanism of deformation for different metal forming processes and de	evelop		
	analytical relati	ion between input and output parameters of process.			
Z	analyze the nea	at generation and neat transfer mechanism due to friction and deformation during v	arious		
2	metal forming p	processes. d analyze the concent of viold criteric annliceble to different meterial deformation pro			
3	apply theoretic	a analyze the concept of yield criteria applicable to different material deformation pro	orming		
4	apply theoretic	an and experimental techniques for measurement of mipor tant outcomes of metal fo	Jinnig		
5	understand the	e different lubrication mechanisms lubricants and other valuable affecting the	metal		
0	forming proces	ses under different working conditions	metai		
6	understand the	e different types of defects, causes and apply their remedial measures in metal fo	orming		
	processes		0		
Detailed	Contents:				
S.No.	o. Title Content details		Credit		
			Hrs.		
Unit 1	Basics of	True stress and true strain, True stress-strain curves, Selection of stress-strain	10		
	Plastic	curves for cold and hot working processes, Yield criteria: Tresca's maximum			
	deformation	ation shear stress condition and Von-Mises strain energy criterion, Heat generation			
		and near dialister in metal forming processes, remperatures in quasi continuous			
	forming operations. Examination of metal forming processes, Metal forming as a				
		parameters			
Unit 2	Forging	Working loads for plain strain forging of strip and disc under conditions of well	4		
01110 2	processes	lubrication and sticking of material with die and under mixed conditions.	•		
	processes	Prediction of working loads under above approach (simple plain strain and axis			
		symmetric problems)			
Unit 3	Drawing	Prediction of working loads and maximum deformation analysis of the processes	4		
	processes	of wire drawing/tube drawing, strip drawing and extrusion. Various			
		parameters/variables affecting the processes of wire drawing, tube drawing,			
		strip drawing and extrusion, Various methods of tube drawing and their			
	comparison.				
Unit 4	Rolling	Classification of rolling mills, Prediction of roll pressure for flat strip rolling in			
	process the leading and lagging zones, Roll separating forces, Torque on the roll, Affect of				
		front and back tensions, Affect of support rolls, Condition for unaided entry of			
	work piece into the rolls, Condition for continuous rolling, Maximum draft,				
Unit 5	Doon	Doop drawing of circular blanks. Prediction of radial stross and punch load	4		
Unit 5	drawing	Ironing Wrinkling Different aspects of process · Blank holding Drawing ratio	4		
	nrocess	Die profile radius Punch profile radius Radial clearance Drawing speed and			
	P. COCCO	Lubrication. Various parameters/variables affecting the deep drawing process			
Unit 6	Lubrication	Principle and mechanism of lubrications. Classification of lubricants.	4		
	in metal Hydrodynamic lubrication, Boundary and extreme pressure lubricants. Solid				

	forming processes	lubricants, Lubricants used for rolling, extrusion, wire drawing and forging processes. General properties of lubricants.	
Unit 7	Defects in various metal forming processes	Defects in rolling, forging, extrusion, wire drawing and deep drawing , their causes and remedial measures	4

- 1. Principles of Industrial Metal working Processes by G.W. Rowe, (CBS Publishers & Distributors).
- 2. Technology of Metal Forming Processes by Surender Kumar, (Prentice-Hall of India Pvt. Ltd.)
- 3. Theory of Plasticity and Metal Forming Processes by Dr. Sadhu Singh, (Khanna Publishers)
- 4. Production Engineering by P.C.Sharma, (S.Chand & Company Ltd.)
- 5. Mechanical Metallurgy by George E. Dieter, (McGraw-Hill Book Company)

References:

- 1. Metal Forming Fundamentals and Applications by Taylan Altan, Soo-Ik Oh and Harold L. Gegel, (American Society for Metals)
- 2. Metal Forming : The application of limit analysis by Betzalel Avitzur, (Marcel Dekker, Inc USA)
- 3. Metal Forming Practice : Processes Machines Tools by Heinz Tschaetsch, (Springer International Edition)

SUBJECT CODE: MPE-102 SUBJECT NAME: ADVANCED METAL CASTING

Programme: M . Tech. (PE)		$\mathbf{L}:3\mathbf{T}:0 \mathbf{P}:0$		
Semester: 1		Teaching Hours: 36		
Theory/Practical: Theory		y Credits: 3		
Interna	a l Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%		
Externa	al Marks: 100	Duration of End Semester Exam(ESE): 3Hrs		
Total M	larks: 150	Status: Core Course		
Additior	nal Material Allow	ved in ESE: Scientific Calculator		
On comp	pletion of the cou	rse, the student will have the ability to:		
CO#.	Course Outcome	es (Cos)		
1	understand and a	apply the principles of metal casting processes and develop analytical relation	between	
	input and output	process parameters		
2	understand, analy	ze and apply the concept of cooling rate of materials in metal casting		
3	apply theoretical	and experimental techniques for measurement of important outcomes of	casting	
	processes like hardness, dimensional accuracy etc.			
4	understand the model of casting economics and optimization and its measurement			
5	apply the fundamentals of physics to develop theoretical relations for different types of casting proces			
6	6 Understand principles of destructive and non-destructive testing for casting defects			
Detailed	Contents:			
S.No.	Title	Content details	Credit	
			Hrs.	
Unit 1	Basics of silica	Structure of silica and different types of clays, bonding mechanism of silica –	6	
	and silicates	water-clay systems, swelling of clays, sintering adhesion and colloidal clay,		
	silica grain shape and size distribution, standard permeability A.F.S. clay.			
Unit 2	2 In-gradients Characteristics, Ingredients and additives of moulding sand, core sands.		2	
	and additives			
	of moulding			
sand				
Unit 3	Solidification	Solidifications of metals, nucleation, free energy concept, critical radius of	10	
		nucleus, nucleation and growth in metals and alloys, constitutional super		
		cooling, columnar, equiaxed and dendrite structures, freezing of alloys, centre-		

		line feeding resistance, rate of solidification, time of solidification, mould				
Unit 4	Riser and gating design	Riser design shape, size and placement, effect of appendages on risering, effective feeding distances for simple and complex shapes, use of chills, gating design, filling time, aspiration of gases, top, bottom and inside gating, directional solidification, stresses in castings, metal mould reactions, expansion scale and metal penetration, analysis of the process	8			
Unit 5	Various moulding and casting processes	Hot box, cold box process, investment casting, shell moulding, full mould process, die casting, ceramic shell mould, vacuum moulding process applications, advantages and limitations	4			
Unit 6	Non-ferrous Die-casting	Die casting of aluminium and its alloys, brass and bronze	4			
Unit 7	Casting defects	Destructive and non-destructive testing for casting defects	2			

- 1. Fundamentals of Metals Casting by R.A.Flimm; Addison Wesley
- 2. Principles of Metal Casting by Heine Loper and Resenthal; McGraw Hill
- 3. Product Design & Process Engineering by Hielel and Draper; Mcgraw Hill
- 4. Foundry Practice by Salman & Simans; Issac Pitman.

References:

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Metals Handbook- Metal Casting; ASME

SUBJECT CODE: MPE-105

		SUBJECT NAME: ENTREPRENEURSHIP	
Programme: M. Tech. (PE)		L: 3 T: 0 P: 0	
Semester	:1	Teaching Hours: 36	
Theory/H	Practical: Theory	Credits: 3	
Internal	Marks: 50	Percentage of Numerical/Design/Programming Problems: 5%	
External	Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Ma	rks: 150	Status: Elective-I	
Additional	l Material Allowed	l in ESE: Scientific Calculator	
On comple	etion of the course	e, the student will have the ability to:	
CO#.	Course Outcome	s (Cos)	
1	evaluate the proje	ct appraisal reports	
2	design and analys	e the risk associated with a new project	
3	evaluate and impr	rove the existing project	
4	study and implem	entation of government polices	
5	design technical a	nd financial reports	
6	judge and evaluat	e the creativity and entrepreneurial properties of individual	
Detailed (Contents:		
Sr. No	Title Content Details C		Credit Hrs.
Unit 1	Introduction	Meaning and Importance, Evolution of term 'Entrepreneurship',Factors influencing entrepreneurship', Psychological factors, Social factors, Economic factor, Environmental factors, Characteristics of an entrepreneur, Entrepreneur and Entrepreneur, Types of entrepreneur:- According to Type	4

		of Business, According to Use of Technology, According to Motivation, According to Growth, According to Stages, New generations of entrepreneurship viz. social entrepreneurship, Edupreneurship, Health entrepreneurship, Tourism entrepreneurship, Women entrepreneurship etc. & Barriers to entrepreneurship	
Unit 2	Entrepreneurial Motivation	Motivation, Maslow's Theory, Herjburg's Theory, McGragor's Theory, McClelland's Need – Achievement Theory, Culture & Society, Values / Ethics & Risk taking behavior	5
Unit 3	Creativity	Creativity and entrepreneurship, Steps in Creativity, Innovation and inventions, Using left brain skills to harvest right brain ideas, Legal Protection of innovation, Skills of an entrepreneur, Decision making and Problem Solving (steps in decision making)	5
Unit 4	Organisation Assistance	Assistance to an entrepreneur, New Ventures, Industrial Park (Meaning, features, & examples), Special Economic Zone (Meaning, features & examples), Financial assistance by different agencies, MSME Act, Small Scale Industries, Carry on Business (COB) licence, Environmental Clearance, National Small Industries Corporation (NSIC), Government Stores Purchase scheme (e-tender process), Excise exemptions and concession, Exemption from income tax, Quality Standards with special reference to ISO, Financial assistance to MSME , Modernization assistance to small scale unit, The Small Industries Development Bank of India(SIDBI),	6
Unit 5	State Industrial Corporationst	The State Small Industries Development Corporation(SSIDC), Export oriented units, Incentives and facilities to exports entrepreneurs, Export oriented zone, Export-Import Bank of India, Other agencies for industrial assistance, Other Corporations with focus as specific segments, State Industrial Development Corporation (SIDC), State Financial Corporation (SFCs), Directorate General of Supplies and Disposals(DGS & D), Khadi and Village Industries Commission (KVIC), Industrial Estate, Financing of Industrial Estates, Registration with DGS & D, Registration Categories, Registration Procedure , Benefits of DGS & D & Information facilities centre in DGS & D	5
Unit 6	Rules And Legislation	Applicability of Legislation, Industries Development (Regulations) Act, 1951., Factories Act, 1948., The Industrial Employment (Standing Orders) Act, 1946, Suspension, Stoppage of work, Termination of employment, Environment (Protection) Act, 1986, The sale of Goods Ac, 1950, Industrial Dispute Act 1947 & GST Act	5
Unit 7	Project Report	Introduction, Idea Selection, Selection of the Product / Service, Aspects of a Project, Phases of a Project, Project Report, Contents of a Project Report, Proforma of a Suggested Project Report for a manufacturing Organization, Human Project Report, Financial Report & Technical Reports	6

1. Entrepreneurship development programme in India and its relevance to developing countries by VG Patel; EDI-India; Ahmedabad (1987)

- 2. Developing of New Entrepreneurship by EDI India; Ahmedabad (1987)
- 3. Self –made Impact making Entrepreneurship by G.R. J ain and M.A.Ansari; by EDI India; Ahmedabad (1988)

SUBJECT CODE: MPE-106 SUBJECT NAME: JIG FIXTURE & PRESS DESIGN

Programme: M. Tech. (PE)		L: 3 T: 0 P: 0			
Semester: 1		Teaching Hours: 36			
Theory/Practical: Theory		Credits: 3			
Internal Marks: 50		Percentage of Numerical/Design/Programming Problems: 25%			
External	Marks: 100	Duration of End Semester Exam(ESE): 3hr			
Total Mar	·ks: 150	Status: Elective-I			
Additional On comple	Material Allowe	ed in ESE: Scientific Calculator se, the student will have the ability to:			
CO#.	Course Outcomes (Cos)				
1	design jigs for di	fferent jobs and products			
2	design Fixture fo	or different jobs and products			
3	evaluate the eco	nomics of designing of jigs and fixtures			
4	study advancem	ents in designing of jigs and fixtures			
5	design Dies and	die components			
6	design and evalu	ate forming dies and equipment's			
Detailed C	ontents:				
Sr. No	Title	Content Details	Credit Hrs.		
Unit 1	Introduction to Jigs & Fixture	Definition of Jigs and Fixtures, Difference between jigs and fixtures, Advantages, Steps for design.			
Unit 2	Elements of Jig & Fixtures	Degree of freedom, 3-2-1 principles, Choice of location, redundant location, Diamond pin calculation, Locating methods and chip control. Locating Devices: Surface location, Rest blocks, pins, V-blocks, N Equalizers, Profile locators. Consideration of Safety factor while designing of Jig Fixture and Gauge, materials used in jigs and fixture, locating principle, locating methods and devices, standard parts, Basic Clamping principles, cutting forces, Rigid clamping, wedge clamping, Cam clamping, quick action clamps, Toggle clamps, simultaneously acting clamps. Jig Bushes	6		
Unit 3	3 Design of Jigs Plate jigs, Box jigs, Indexing jigs, Milling fixtures, and Indexing-milling fixtures, turning fixtures, Grinding fixtures, Universal jigs, Design Problems Design of Universal Jigs, Hydro & Pneumatic Jigs, Indexing Jigs		6		
Unit 4	Design Of Fixtures	sign Of tures Indexing Fixtures: Indexing methods, Linear, Rotary, Indexing jigs, Indexing fixtures. Assembly and Welding Fixture – Principles Broaching fixtures, and Assembly Fixtures. Boring fixtures. Hydro & Pneumatic Fixtures, Turning Fixtures, Milling Fixtures Grinding Fixtures and Design Problems of Fixtures			
Unit 5	Elements of Die	lements of Punch , Punch Plate, Die Plate, stripper plate, Top Plate, Shank, Guide pillar, Guide Bushes, gauges, Stock guides ,Die stops, Nest Gages and Pushers, Stock material utilization and strip layouts. Materials selection and used for above referred parts.			
Unit 6	Die Design	Types of Die Sets, Spring selection process. Design of blanking, Piercing Dies, Types and function of Pilots. Calculation of cutting force and stripping force, importance of cutting force, calculation of press tonnage, calculation of cutting clearance, importance of cutting clearance. Method of reducing the cutting force, Calculation of die size and punch size for blanking and piercing operation. Function of screw hole and dowel holes, Effects of Die and Punch life.	5		

Unit 7	Types of Dies	Introduction to Bending Dies, Design of Bending Dies, Introduction to Inverted Dies and Compound Dies function of various parts of Inverted dies and Compound dies. Design of compound and Inverted Dies. Definition and Introduction of Progressive dies Introduction of Trimming Dies, Notching, Side action Dies, Combination Dies, Flanging Dies, Difference between Drawing and Forming operation, Introduction to Draw Dies, Inverted Draw Dies, Deep drawing process Forming Dies	5
Unit 8	Advancements in Jig Fixture and Die Design	Computer Aided Jigs & Fixtures, Jigs & Fixtures for CNCs Role of Jig Fixtures in FMS, Automated Die Sets, Computer Controlled Dies	2

- 1. Jigs and Fixtures Design by Franklin-D-Jones.
- 2. Jigs and Fixtures by Colovin; F.H. and Massachusettes Institute of Technology.
- 3. Tool Design by Donaldson

Reference Books

- 1. Jigs and Fixtures Design by Hardy; H.W.
- 2. Jigs and Fixtures Design by Haughton; P.S.
- 3. Jigs and Fixtures by Parson

SUBJECT CODE: MPE-107

SUBJECT NAME: ADVANCE PLANT LAYOUT DESIGN

Programme: M. Tech. (PE)) L: 3 T: 0 P: 0	
Semester: 1		Teaching Hours: 36	
Theory/Practical: Theory		/ Credits: 3	
Internal	Marks: 50	Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Ma	r ks: 150	Status: Elective-I	
Additional	l Material Allow	ed in ESE: Scientific Calculator	
On comple	tion of the cour	se, the student will have the ability to:	
CO#.	Course Outcon	nes (Cos)	
1	design Systema	itic an Industrial Plant	
2	evaluate the sit	e locations and factors effecting the plant layouts	
3	design materia	l handling system of Plant	
4	study and evalu	uate different types of material equipment's	
5	evaluate different maintenance techniques used in running effective plant		
6	design and evaluate different safety norms		
Detailed	Detailed Contents:		
Sr. No	Title	Content Details	Credit Hrs
Unit 1	Introduction to Facilities Planning	Scope of Facilities Planning – Importance & Objectives, Nature Of Location Decision, Affecting Facility Location, Single & Multiple Facility Location Models, Qualitative Considerations in Facility Location, Factors Urban v/s Rural Location, Site Selection Location Pattern In India.	3
Unit 2	Site Location	Importance of location, hierarchy of location problems, factors affecting site location; factors in heavy manufacturing location, light industry location, warehouse location, retail location. Various theories/models of site location like bid rent curves, Weber's isodapanes, Weber's classification of industries, Hoover's tapered transport rates, agglomeration, factor rating method, single facility location, load-distance model, break-even analysis, transportation method. New plant location and shut down under dynamic conditions.	5

Unit 3	Systematic Layout Planning 1	Plant Layout – Introduction, Types of Plant Layout: Product, Process, Fixed Postion, Hybrid – Cellular, FMS, etc. Phases of Layout Planning, Systematic Layout Planning, P-Q Analysis, Flow of Materials Analysis – Charting & Diagram Techniques, Activity Relationship Analysis – REL Diagram, Space Requirements & Availability, Techniques of Space Determination	6
Unit 4	Systematic Layout Planning 2	Systematic Layout Planning: Modifying Considerations, Practical Limitations, Selection of Layout – Techniques of Layout, Installation of Layout, Concept of Line Balancing: Heuristics, Assessing Performance. Computerized Layout Planning – Introduction & Concept. CORELAP, ALDEP	6
Unit 5	Material Handling	Principles of Material Handling, Material Handling Function, Scope And Functions Of Material Handling, Manual Mechanical Handling Ratio, MH Equipment Types Positioning Equipment, Unit Load Equipment, Auto Identification & Control Equipment, Transport Equipment – Conveyors, Cranes, Industrial Trucks. Storage Equipment, AGVs & Robots	5
Unit 6	Systematic Handling Analysis	Handling Analysis, External Integration, Classification of Materials, Layout Considerations, Analysis of Moves, Visualization of Moves, Flow Diagram – DI Plot, Preliminary Handling Plans, Modifications & Practical Limitations, Calculation of Requirements, Evaluation of Alternatives, Installation	4
Unit 7	Maintenance	Role Of Maintenance Management, Organization & Systems Of Maintenance Management, Types Of Maintenance: Breakdown, Preventive, Predictive.	4
Unit 8	Safety	Industrial Safety – Training for Safety, Communicating Safety Messages, Safe Practices in Industry, Safety Considerations in Manual & Mechanical Handling, Transportation, Role of Factory Inspector, Safety Officer Safety of Hazardous, explosive and Chemical materials in an industry	3

- 1. Richard Muther, Practical Plant layout, McGraw Hill Book Company, New York
- 2. J.M Apple, Plant Layout & Material Handing, John Woley & Sons, N. York
- 3. G.K Aggarwal, Plant layout & material handling, Jain Publishers, New Delhi
- 4. Krajewski, Operations Management, Pearson Education, New Delhi

Reference Book

- 1. Tompkins, While Facilities Planning, John Wiley & Sons, New York.
- 2. Francis White, Facility Location & Layout, PHI, New Delhi
- 3. Vijay Sheth, Facilities Planning and Materials Handling, Marcle Decker, New York.

SUBJECT CODE: MPE- 108 SUBJECT NAME: PRODUCT DESIGN AND DEVELOPMENT

Programme: M. Tech. (PE)	L: 3 T: 0 P: 0	
Semester: 1	Teaching Hours: 36	
Theory/Practical: Theory	Credits: 3	
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%	
External Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 150	Status: Program Elective II	
Additional Material Allowed	in ESE: NIL	
On completion of the course	, the student will have the ability to:	
CO#. Course Outcomes (Course Outcomes (Cos)	
1 analyze, evaluate an	analyze, evaluate and apply the methodologies for product design, development and management.	

2	understand the technical and business as	pects of the	product develo	pment pro	ocess.

3 apply creative process techniques in synthesizing information, problem-solving and critical thinking.

- 4 use basic fabrication methods to build prototype models for hard-goods and soft-goods and packaging.
- 5 skilled in implementation of gathering data from customers and establish technical specification
- 6 apply technique of PDD Manufacturing.

Detailed Contents:

S.No.	Title	Content details	Credit
			Hrs.
Unit 1	Introduction	Introduction to product design. Classification/ Specifications of Products.	6
		Principal requirements of good product design. Importance of product design	
		in industry. Essential factors and considerations affecting product design.	
		Product design methodology and techniques.	
Unit 2	Visual Design	Basic elements and concepts of visual design. Materials, forms, function and	6
	U	color relationships. Color theory. Product graphics and different methods of	
		product graphics. Visual communication	
Unit 3	Frannomics	Human engineering considerations in product design Human factors in design	6
onico	Ligonomics	nringinles of user friendly designs. Introduction of ergenemics man/	U
		principles of user-menuity designs. Incroduction of ergonomics, many	
		machine/environment systems concept. Development of ergonomics.	
		Psychological & physiological considerations.	
Unit 4	Controls and	Hand controls and foot controls, location of controls and work place envelope.	6
	Displays	Recommendation about hand and foot push buttons, rotary selector switches,	
		hand wheels, crank levers etc. Instruments and displays.	
Unit 5	Material	Packaging and function of a package. Packaging materials their characteristics	4
	Packaging	and applications. Packaging design considerations. Modern packaging	
	i uonuging	nrocesses	
Unit 6	Value	Value angineering concent advantage and emplications Value Types of values	4
Unito	value	value engineering, concept, advantage and applications. Value. Types of values.	4
	Engineering	Analysis of function, using and evaluating functions. Value engineering	
		techniques. Value control.	
Unit 7	Product	Defining new Product and their classification. Product life cycle. New product	4
	Development	development process. Product development and testing.	

Text Books:

- 1. B. W. Niebel and A. B. Draper Product design and process engineering.
- 2. Arthur E. Mudge Value engineering: a systematic approach.
- 3. <u>Morris Asimov</u> Introduction to Design.
- 4. <u>W. H. Mayall</u> Industrial design for engineers.

Reference books:

- 1. Hand Book of Maynard's Industrial Engineering Kjell b. Z andin.
- 2. Introduction to Product Design and Development for Engineers- Ali Jamnia.
- 3. Product Design and Manufacture <u>Wen, Jiuba</u>.

SUBJECT CODE: MPE- 109

SUBJECT NAME: ADDITIVE MANUFACTURING PROCESS AND APPLICATIONS

Programme: M. Tech. (PE)		L: 3 T: 0 P: 0
Semester: 1		Teaching Hours: 36
Theory	/Practical: Theory	Credits: 3
Interna	al Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%
Externa	al Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total M	larks: 150	Status: Program Elective II
Additional Material Allowed in E		in ESE: NIL
On completion of the course, the student will have the ability to:		the student will have the ability to:
CO#.	Course Outcomes (C	Cos)
1	define the various process used in Additive Manufacturing.	
2	analyze and select suitable process and materials used in Additive Manufacturing.	
3	3 identify, analyze and solve problems related to Additive Manufacturing.	
4 apply knowledge of a		dditive manufacturing for various real-life applications.
5 apply technique of CAD and reverse engineering for geometry transformation in Additive Manufa		AD and reverse engineering for geometry transformation in Additive Manufacturing.
6	do selection of AM te	chnologies using decision methods

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Introduction to	Overview, Basic principle need and advantages of additive manufacturing,	6
	Additive	Procedure of product development in additive manufacturing, Classification	
	Manufacturing	of additive manufacturing processes, Materials used in additive	
	(AM)	manufacturing, Challenges in Additive Manufacturing.	
Unit 2	Additive	Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused	8
	Manufacturing	deposition modeling (FDM), Laminated Object Manufacturing (LOM),	
	Processes	Selective deposition lamination (SDL), Ultrasonic consolidation, Selective	
		laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam	
		free form fabrication (EBFFF), Electron beam melting (EBM), Plasma	
		transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive	
		manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM).	
Unit 3	Additive	Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/	8
	Manufacturing	Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to	
	Machines and	NC/CNC/DNC machine tools, CNC programming and introduction, Hardware	
	Systems	Interpolators, Software Interpolators, Recent developments of CNC systems	
		for additive manufacturing.	
Unit 4	Pre-Processing	Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-	6
	in Additive	CAD model using reverse engineering, Part orientation and support	
	Manufacturing	generation, STL Conversion, STL error diagnostics, Slicing and Generation of	
		codes for tool path, Surface preparation of materials.	
Unit 5	Post-	Support material removal, surface texture improvement, accuracy	8
	Processing in	improvement, aesthetic improvement, preparation for use as a pattern,	
	Additive	property enhancements using non-thermal and thermal techniques, Brief	
	Manufacturing	information on characterization techniques used in additive manufacturing,	
		Applications of additive manufacturing in rapid prototyping, rapid	
		manufacturing, rapid tooling, repairing and coating	

Text Books:

- 1. Gibson, I, Rosen, D W., and Stucker, B., Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010
- 2. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010
- 3. Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth Edition of Rapid Prototyping, World Scientific Publishers, 2014
- **4.** Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003

Reference books:

- 1. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007
- 2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006
- 3. Mahamood R.M., Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG 2018
- 4. Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, "Laser Cladding", CRC Press, 2004

SUBJECT CODE: MPE-110 SUBJECT NAME: FLEXIBLE MANUFACTURING SYSTEMS

Program	ne: M . Tech. (PE) L: 3 T: 0 P: 0	
Semester	:1	Teaching Hours: 36	
Theory/P	ractical: Theory	V Credits: 3	
Internal N	Marks: 50	Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Mai	·ks: 150	Status: Program Elective II	
Additional	Material Allow	ed in ESE: Scientific Calculator	
On comple	tion of the cour	se, the student will have the ability to:	
CO#.	Course Outcon	nes (Cos)	
1	classify and dist systems.	tinguish FMS and other manufacturing systems including job-shop and mass pro-	duction
2	explain process	ing stations and material handling system used in FMS environments.	
3	design and anal	yze FMS using simulation and analytical techniques.	
4	understand too	l management in FMS.	
5	analyze the production management problems in planning, loading, scheduling, routing and breakdown in a typical FMS.		
6	understand the	Machine Computer Interface	
Detailed (contents:		
Sr. No.	Title	Content Details	Credit Hrs.
Unit 1	FMS Introduction and Description	limitations with conventional manufacturing, Need for FMS Introduction, Definition, Basic Component of FMS, Significance of FMS, General layout and configuration of FMS, Principle Objectives of FMS, Benefits and limitations of FMS, Area of Application of a FMS in Industry, Various Hardware and Software required for an FMS, CIM Technology, Hierarchy of CIM, FMS Justification Description and Classifications of Manufacturing Cell, Unattended Machining, Cellular versus Flexible Manufacturing.	4
Unit 2	Group Technology	Introduction, Definition, Reasons for Adopting Group Technology, Benefits of Group Technology Affecting Many Areas of a Company, Obstacles to Application of GT	4
Unit 3	Turning and Machining Centres	Introduction, Types ,Construction and Operation Performed on Turning enter, Automated Features and Capabilities of Turning Centres, General Advantages and Disadvantages of Vertical and Horizontal Machining Centres, Pallet and Part Loading and Programming Options in Machining Centres, Automated features and capabilities of a Machining Centres	4
Unit 4	Coordinate Measuring Machines	Introduction, Types, Construction and General Functions of CMM, Operational Cycle Description, CMM Applications, Importance to Flexible Cells and Systems	3
Unit 5	Automated Material Movement & Storage System	Introduction, Types of AGV and Their principle of working, Advantages, Limitation and General AGV Guide path, Robots, Benefits of using Industrial Robots, Basic components and benefits of Automated Storage and Retrieval Systems, Conveyors and Pallet Flotation System, Queuing Carousels and Automatic Work Changers, Coolant and Chip Disposal and Recovery system.	4
Unit 6	Computer Controled FMS	Introduction – composition of FMS– hierarchy of computer control –computer control of work center and assembly lines – FMS supervisory computer control – types of software specification and selection – trends .Computer function, FMS	6

		data file, system reports planning the FMS, analysis method for FMS, application and benefits	
Unit 7	FMS Simulation & Data Base	Application of simulation – model of FMS– simulation software – limitation – manufacturing data systems – data flow – FMS database systems – planning for FMS database. DBMS and their applications in CAD/CAM and FMS distributed systems in FMS –Integration of CAD and CAM - Part programming in FMS, tool data base - Clamping devices and fixtures data base.	6
Unit 8	Interfacing of computers	Machine tool controllers and handling systems: communications standards - programmable Logic Controllers (PLC's) – Interfacing - Computer aided Project planning – dynamic part scheduling.	5

- 1. Jha, N.K. "Handbook of flexible manufacturing systems", Academic Press Inc., 1991.
- 2. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., 1994.
- 3. Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recent development", Elsevier Science, 1995.
- 4. Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India Pvt., New Delhi, 1996.
- 5. Kalpakjian, "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co., 1995.

Reference Books

- 1. Paul Ranky., "The design and operation of FMS", IFS publication, 1983.
- 2. Mikell P Groover, "Automation Production systems, Computer Integrated Manufacturing", Prentice Hall, 1987.
- 3. David J.Parrish, "Flexible Manufacturing" Butterworth-Heinemann, 1990.

SUBJECT CODE: LMPE-101

SUBJECT NAME: ADVANCED MANUFACTURING PROCESSES LABORATORY

Programme: M.Tech. (PE)		L: 0 T: 0 P: 4	
Semeste	er: 1	Teaching Hours:4	
Theory/	/Practical: Practical	Credits: 2	
Internal	l Marks: 50	Percentage of Numerical/Design/Programming Problems: Nil	
Externa	l Marks: 50	Duration of End Semester Exam(ESE): 1.5 hr	
Total Marks: 100		Status: Compulsory	
On Comp	On Completion of the course, the student will have the ability to:		
CO#		Course Outcomes(CO)	
1	analyze the working	of various advanced manufacturing processes	
2	understand the advantages and limitations of advanced manufacturing processes		
3	evaluate performance of various components involved in advanced manufacturing processes		
4	check the proper working of various advanced manufacturing processes		
5	measure/determine the changes in the output due to change in certain input conditions		
6	explain the phenomenon of various advanced manufacturing processes		

S. No.	Experiment
1	To study fused deposition modelling process and its process parameters
2	To perform screw extrusion for preparation of feed stock filament
3	To determine heat capacity for polymeric samples using differential scanning calorimetry
4	To determine the coefficient of friction during dry sliding wear
5	To perform vapour smoothing of 3D printed polymeric functional prototypes and its process parametric
	optimization
6	To perform erosion testing (of given job/sample) and its process parametric optimization

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: LMPE-102 SUBJECT NAME: ADVANCED MACHINING AND CASTING PROCESSES LABORATORY

Programme: M.Tech. (PE)		L: 0 T: 0 P: 4		
Semest	ter: 1	Teaching Hours:4		
Theory	/ Practical: Practical	Credits: 2		
Interna	al Marks: 50	Percentage of Numerical/Design/Programming Problems: Nil		
Extern	al Marks: 50	Duration of End Semester Exam(ESE): 1.5 hr		
Total M	Iarks: 100	Status: Compulsory		
On Com	On Completion of the course, the student will have the ability to:			
CO #		Course Outcomes(CO)		
1	analyze the working of various advanced machining and casting processes			
2	understand the advantages and limitations of advanced machining and casting processes			
3	evaluate performance of various components involved in advanced machining and casting processes			
4	4 check the proper working of various advanced machining and casting processes			
5	measure/determine the changes in the output due to change in certain input conditions			
6	explain the phenomer	non of various advanced machining and casting processes		

S. No.	Experiment
1	To study vacuum moulding process and its process parameters
2	To perform machining of MS with HSS tool (single point cutting tool) with measurement of tool tip
	temperature, chip formation, force measurement using dynamometer and process parametric
	optimization
3	To study investment casting process and its process parameters
4	To perform EDM (of given job/sample) and its process parametric optimization
5	To perform electrochemical machining (of given job/sample) and its process parametric optimization
6	To perform ultrasonic drilling (of given job/sample) and its process parametric optimization

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: MRM-101 SUBJECT NAME: RESEARCH METHODOLOGY AND IPR Programme: M Tech (PE) L: 3 T: 0 P: 0

Frogramme: M. Tech. (PE)		
Semester: 1		Teaching Hours: 36
Theory/Practical: Theory		Credits: 3
Interna	l Marks: 50	Percentage of Numerical/Design/Programming Problems: 30%
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total M	arks: 150	Status: Core Course
Addition	al Material Allowed	in ESE: Scientific Calculator
On comp	letion of the course,	the student will have the ability to:
CO#.	Course Outcomes ((Cos)
1	understand research	n problem formulation.
2	analyse research related information.	
3	follow research ethics.	
4	understand that tod	ay's world is controlled by Computer, Information Technology, but tomorrow world
	will be ruled by idea	is, concept, and creativity.
5	understanding that	when IPR would take such important place in growth of individuals & nation, it is
	needless to emphasise the need of information about Intellectual Property Right to be promoted am	
	students in general & engineering in particular.	
6	6 understand that IPR protection provides an incentive to inventors for further research wor	
	investment in R &	D, which leads to creation of new and better products, and in turn brings about,
	economic growth an	nd social benefits.

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Introduction	Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations	6
Unit 2	Literature survey	Effective literature studies approaches, analysis Plagiarism, and Research ethics	4
Unit 3	Technical writing	Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee	6
Unit 4	Nature of Intellectual Property	Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.	8
Unit 5	Patent Rights	Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.	6
Unit 6	New Developments in IPR	Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.	6

Text Books:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 4. Mayall, "Industrial Design", McGraw Hill, 1992.
- 5. Niebel, "Product Design", McGraw Hill, 1974.
- 6. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 7. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 8. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

SUBJECT CODE: MAC-105 SUBJECT NAME: CONSTITUTION OF INDIA

L: 2 T: 0 P: 0
Teaching Hours: 24
Credits: 0
Percentage of Numerical/Design/Programming Problems: 0%
Duration of End Semester Exam(ESE): 3hr
Status: Audit Course 1

Additional Material Allowed in ESE: Scientific Calculator

CO#. C	Course Outcomes (Cos)
1 d	liscuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of
G	Gandhi in Indian politics.
2 d	liscuss the intellectual origins of the framework of argument that informed the conceptualization of social
re	eforms leading to revolution in India.
3 d	liscuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the
le	eadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult
SI	uffrage in the Indian Constitution.
4 d	liscuss the passage of the Hindu Code Bill of 1956.

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	History of Making of the Indian Constitution	History, Drafting Committee, (Composition & Working).	4
Unit 2	Philosophy of the Indian Constitution	Preamble, Salient Features.	4
Unit 3	Contours of Constitutional Rights & Duties	Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy and Fundamental Duties.	4
Unit 4	Organs of Governance	Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.	4
Unit 5	Local Administration	District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.	4
Unit 6	Election Commission	Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.	4

Text Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

SUBJECT CODE: MPE-103 SUBJECT NAME: ADVANCED WELDING PROCESSES

		SOBJECT NAME: ADVANCED WEEDINGT ROCESSES	
Programme: M. Tech. (PE)		L: 3 T: 0 P: 0	
Semester: 2		Teaching Hours: 36	
Theory/Practical: Theory		Credits: 3	
Internal Marks: 50		Percentage of Numerical/Design/Programming Problems: 20%	
Externa	al Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total M	larks: 150	Status: Core Course	
Additior	nal Material Allowe	d in ESE: Scientific Calculator	
On comp	oletion of the cours	e, the student will have the ability to:	
CO#.	Course Outcomes	(Cos)	
1	understand and ap	ply the principles of welding processes and develop analytical relation betwe	en input
	and output process	parameters	
2	understand, analyz	e and apply the concept of cooling rate of materials in welding	
3	apply theoretical a	nd experimental techniques for mode of metal transfer	
4	understand the cor	ncept of forces acting on welding arc and arc efficiency	
5	apply the fundame	ntals of physics to develop theoretical relations for different types of welding p	rocesses
6	understand princip	les of destructive and non-destructive testing for welding defects	
Detailed	Contents:		
S. No.	Title	Content details	Credit
11.1.4			Hrs.
Unit I	Classification of	Basic classification of weiding processes, weidability, weid thermal cycle,	4
	weiding process	changes in wold metal metallurgical changes in wold metal phase	
		transformation during cooling of weld metal in carbon and low allow steel	
		nrediction of microstructures and properties of weld metal heat affected	
		zone (HAZ) re-crystallization and grain growth of HAZ gas metal reaction	
		effects of alloving elements on welding of ferrous metals.	
Unit 2	Welding arc	Arc efficiency, temperature distribution in the arc; arc forces, arc blow.	4
		electrical characteristics of an arc. mechanism of arc initiation and	-
		maintenance, role of electrode polarity on arc behavior and arc stability,	
		analysis of the arc.	
Unit 3	Coated	Electrode coatings, classification of coatings of electrodes for SMAW, SAW	4
	electrodes	fluxes, role of flux in-gradients and shielding gases, classification of solid and	
		flux code wires.	
Unit 4	Fusion welding	Manual metal arc welding (MMAW), gas tungsten arc welding (GTAW), gas	4
	processes	metal arc welding (GMAW), flux-cored arc welding (FCAW) and CO welding	
		processes, plasma arc, submerged arc welding, electro gas and electro slag	
	*** 1 11	welding, analysis of the process.	
Unit 5	Welding power	Arc welding power sources basic characteristics of power sources for	5
	sources	various arc weiding processes, duty cycles, AC, DC weiding power source, DC	
		reculiers, investor controlled reculiers, inverter systems. Arc length	
Unit 6	Motal Transfor	Machanism and types of metal transfor forces affecting metal transfor	1
Unit	and Molting	modes of metal transfer metal transfer in various welding processes	-
	Rate	effective of nolarity on metal transfer and melting rate	
Unit 7	Solid State	Theory and mechanism of solid state welding techniques and scope of	4
onic /	welding	friction welding, diffusion welding, cold pressure welding and ultrasonic	•
	B	welding, high energy rate welding, analysis of the process	
Unit 8	Welding	Technique, scope and application of the electron beam and laser welding	4
	Techniques	processes	
	using radiation		
	energy		
Unit 9	Welding defects	Destructive and non-destructive testing for welding defects	3

- 1. Welding processes & technology by Dr. R.S.Parmar Khanna Publishers
- 2. Welding Engineering & Technology by Dr. R.S.Parmar Khanna Publishers
- 3. Modern Arc Welding Technology by S.V. Nandkarni Oxford & IDH publishing Co.
- 4. Principles of Welding Technology by L.M. Gourd ELBS/ Edward Arnold
- 5. The Physics of welding by Lancaster; Pergaman Press

References Books:

- 1. The Metallurgy of welding by Lancster; George Allen & Unwin Ltd. U.K.
- 2. Metals Handbook- Metal Casting; ASME
- 3. Welding handbook, Vol. 1 & 2, seventh edition; American welding society
- 4. ASME Procedure Handbook of ARC welding; Lincoln Electric Co. USA
- 5. The Solid phase welding of metals by Tylecote; Edward Arnold Pvt. Ltd.
- 6. Welding & Welding Technology Richard L. Little, McGraw Hill
- 7. Welding Technology by Rossi; McGraw Hill
- 8. Welding Technology by Koenigsberger and Adaer; Macmillan.

SUBJECT CODE: MPE-104

SUBJECT NAME: ADVANCED METAL CUTTING

Programme: M. Tech. (PE)	L: 3 T: 0 P: 0		
Semester: 2	Teaching Hours: 36		
Theory/Practical: Theory	Credits: 3		
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 70%		
External Marks: 100	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 150	Status: Core Course		
Additional Material Allowed in ESE: Scientific Calculator			
On completion of the course, the student will have the ability to:			

CO#.	Course Outcomes (Cos)
1	understand and design tool geometry of the basic cutting tools like single point cutting tool, drills etc.
2	solve the problems related with the measurement of cutting forces, tool wear and should be able to deal
	with various parameters effectively.
3	measure and improve tool life of various cutting tools.
4	simulate various machining processes and apply economics of machining.
5	understand the different types of defects, causes and apply their remedial measures in metal cutting
	processes.
6	develop economics of metal machining and abrasive machining.

Detailed Contents:

S. No.	Title	Content details	Credit
			Hrs.
Unit 1	Introduction to	Introduction, system of Tool nomenclature, Tool Geometry, Mechanism of	4
	Metal Cutting	Chip, formation and forces in orthogonal cutting, Merchant's force diagram.	
Unit 2	Oblique Cutting	Normal chip reduction coefficient under oblique cutting, true shear angle,	6
		effective rake, influx region consideration for deformation, direction of	
		maximum elongation, effect of cutting variables on chip reduction co-	
		efficient, forces system in oblique cutting, effect of wearland on force system,	
		force system in milling, effect of helix angle.	
Unit 3	Fundamentals	Theoretical determination of forces, angle relations, heat and temperature	6
	of Dynamo-	during metal cutting; distribution, measurement, analysis, theoretical	
	metry	estimation of workpiece temperature, hot machining.	
Unit 4	Fundamental	Correlation of standard mechanised test. (Abuladze – relation), nature of	6
	factors which	contact and stagnant phenomenon, rates of strains, shear strain and normal	
	effect tool	strain distributions, cutting variables on cutting forces.	
	forces		

Unit 5	Cutting Tools	Tools materials analysis of plastic failure (from stability criterion), Analysis failure by brittle fracture, wear of cutting tools, criterion, flank and crater wear analysis, optimum tool life, tool life equations, (Taylor's woxen etc) Tool life test, machining optimization, predominant types of wear; abrasive, adhesive, diffusion wear models, wear measurements and techniques, theory of tool wear oxidative mathematical modelling for wear.	6
Unit 6	Economics of	Machinability, test of machinability and influence of metallurgy on	4
	Metal	machinability. Economics of Metal machining.	
Unit 7	Abrasive	Mechanics of grinding, cutting action of grit, maximum grit chip thickness,	4
	Machining	energy and grit force temperature during grinding, wheel wear, grinding,	
		process simulation, testing of grinding wheels, mechanics of lapping and	
		honing, free body abrasion.	

- Sen & Bhattacharya, "Principles of Machine tools", New Central Book Agency.
 Brown, "Machining of Metals", Prentice hall.
- 3. Shaw, "Principles of Metal cutting", Oxford I.B.H.
- 4. Arshimov & Alekree, "Metal cutting theory & Cutting tool design", MIR Publications.

References Books: Machining Science – G.K. Lal

SUBJECT CODE: MPE-111 SUBJECT NAME: PRODUCTION AND INVENTORY CONTROL

Program	nme: M. Tech. (PE)) L: 3 T: 0 P: 0	
Semester: 2		Teaching Hours: 36	
Theory/	Practical: Theory	Credits: 3	
Internal	l Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%	
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Ma	arks: 150	Status: Program Elective III	
Additiona	al Material Allow	ed in ESE: Scientific Calculator	
On comp	letion of the cour	se, the student will have the ability to:	
CO#.	Course Outcom	es (Cos)	
1	describe and ana	lyze distinct concepts within production planning and explain how these can be use	d to plan
	and control the p	physical flow of information and products in the production companies.	
2	know about busi	ness forecasting and market survey in the dynamic environment.	
3	schedule production by using different techniques and evaluate different capacity alternatives/strategi		
	meet the customer demand.		
4	know about inventory control techniques and evaluate different inventory alternatives/ strategies.		
5	Know about the concepts of JIT-I and JIT-II.		
6	demonstrate and	l apply the concept of Value Engineering.	
Detailed	Contents:		
S.No.	Title	Content details	Credit Hrs.
Unit 1	Production Planning and Control (PPC)	Introduction and Need of Production Planning and Control, Objectives, Phases and Functions of Production Planning and Control, parameters for PPC.	4
Unit 2	Forecasting	Introduction to Forecasting, uses of forecasts, types of forecasting, forecasting: needs and uses, Forecasting v/s Prediction, Basic Elements of Forecasting, Forecasting Error Measures, Forecasting Performance Measures, Steps in the Forecasting Process, Forecasting Models, Market Survey.	6
Unit 3	Operations Planning and Scheduling Systems	Components of Operations Planning and Scheduling System, Aggregate Planning (Objectives, Process, Strategies, guidelines, methods, Advantages and Limitations), Master Production Schedule (MPS), Material Requirement Planning (MRP), Manufacturing Resources Planning (MRP II), Enterprise Resource Planning(ERP),	10

		Capacity Planning (Introduction, Measurement of Capacity Planning, Capacity Utilization and Efficiency, Estimate Capacity Requirements, Estimating Future Capacity Needs, Factors Influencing Effective Capacity), Routing (Advantages, Steps /procedure, Techniques), Scheduling (Purpose, Types, Principles, Inputs, Categories, Methodology/Techniques), Dispatching (Duties, Procedure and Rules of Dispatching)	
Unit 4	Inventory Control	Inventory Costs, Inventory Classification, Inventory Management, Demand of Inventory, Lot Sizing, Push System vs. Pull System Inventory Control, Inventory Control Systems, Basic Stock Control Methods, Economic Order Quantity (EOQ) Models, Deterministic and Stochastic Models, EOQ and Quantity Discount, EOQ Model with Non-Instantaneous Receipt, EOQ Model with Planned Shortages, Finding the Optimal Order & Back Order Level Production Lot Size with Planned Shortages, JIT-I,JIT-II, computer application in Production and Inventory Control.	8
Unit 5	Value Engineering	Introduction to Value Engineering, Objectives of value analysis, , Difference between value analysis and value engineering, When to apply value analysis, Difference between Value Engineering and Cost Reduction, Value Engineering Job Plan, Techniques of value analysis/engineering, Advantages of Value Engineering.	8

- 1. Chase, Aquilano & Jacob, "Production/Operations Management", Tata McGraw Hill, New Delhi, 2000.
- 2. Krejewski, "Operations Management", Pearson Education Asia, New Delhi, 2002.
- 3. Ebert and Adams, "Production/ Operations Management", Prentice Hall of India, New Delhi, 2005.

Additional Books:

- 1. Chary, S.N., "Production and Operations Management", Tata McGraw Hill.
- 2. Arora, K.C., "Production and Operations Management", Laxmi Publications.

SUBJECT CODE: MPE-112 SUBJECT NAME: OUALITY ASSURANCE

Programme: M. Tech. (PE)		L: 3 T: 0 P: 0
Semester: 2		Teaching Hours: 36
Theory	/Practical: Theory	Credits: 3
Interna	l Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total M	arks: 150	Status: Program Elective III
Addition	al Material Allowe	d in ESE: Scientific Calculator
On comp	letion of the cours	e, the student will have the ability to:
CO#.	Course Outcomes	s (Cos)
1	demonstrate and a	apply the concept Inspection in an industrial organization.
2	develop in-depth k	knowledge of quality control and management.
3	develop in-depth l	knowledge on various aspects of quality management systems
4	apply various qual	ity controls tools in the industries to enhance the quality.
5	develop analytical	skills for investigating and analyzing quality management issues in the industry and
	suggest implemen	table solutions to those.
6 explain the concept		ot of reliability.
Detailed	Contents:	
		Credit

S.No.	Title	Content details	Credit Hrs.
Unit 1	Inspection	Objectives and functions of inspection in industry, Inspection Planning, Types of Inspection, Difference Between Inspection And Quality Control, Non- Destructive Testing, Radiography, Magnaflux, Fluorescent Penetrant Inspection and Ultrasonic Testing, Organization of Inspection, computer aided inspection, economics of inspection, reference to relevant BIS codes.	4
Unit 2	Quality Control	Quality control concept and objectives, Total Quality Control, organization for quality control, Quality Control Procedures, concept and use of Quality Circles. Total Quality Management, Quality assurance.	6

Unit 3	Quality Management System (QMS)	Introduction to QMS/certification system, benefits of a QMS, ISO 9001:2000 requirement, steps to registration, documentation requirements, principles in ISO 9000, Introduction to ISO 14000, elements and clauses of ISO 14001, benefits of implementation of ISO 14000,.	5
Unit 4	Statistical Quality Control	Theory of statistical tolerances, general theory of control charts, control charts for variable and attributes, group control charts, control charts with variable group size, moving average and moving range charts acceptance control charts for trended universe average, cumulative sum control charts, difference control charts, use of Q.C. curves.	8
Unit 5	Acceptance sampling	Introduction to Acceptance sampling, multiple and sequential sampling plans, multi-level sampling plans, acceptance sampling by variables, advantages and limitations, sampling plans by using different criteria, techno-economic comparison of various types of sampling plans.	8
Unit 6	Reliability	Basic concept of reliability, its importance in quality design, methods for its improvement, failure rate curve, life testing, quality-reliability relationship.	5

- 1. Kenedy, E.V. & Andrews Donald, "Inspection and Gauging", Industrial Press Inc., 1977.
- 2. Juran, J.M. & Gryan, F.M, "Quality Planning and Analysis", Tata McGraw Hill, 1995.
- 3. Grant, E.L. & Richards, S.L., "Statistical Quality Control", McGraw Hill, 1998.

Additional Books:

- 1. Mahajan. M, "Statistical Quality Control", Dhanpat Rai & Co., 2008.
- 2. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.

SUBJECT CODE: MPE-113

SUBJECT NAME: ADVANCED INDUSTRIAL TRIBOLOGY

Progra	mme: M. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 2		Teaching Hours: 36
Theory	/Practical: Theory	Credits: 3
Interna	al Marks: 50	Percentage of Numerical/Design/Programming Problems: 10%
Externa	al Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total M	larks: 150	Status: Program Elective III
Additior	nal Material Allowed	in ESE: Scientific Calculator
On comp	pletion of the course,	the student will have the ability to:
Sr.	Course Outcomes (C	Cos)
No.		
1	understand the mech	anism of friction, wear and lubrication and analytical relation between variables
2	understand the conce	ept of types of wear and their measurement under different environments
3	understand the laws	and mechanism of sliding and rolling friction
4	understand the mech	anism of lubrication, their performance with respect to different variables
5	apply these mechanis	sms of tribology in the design of different types of bearings considering various input
	and output paramete	rs
6	apply the application	ns of solid lubricants in various metal forming processes depending upon their
	characteristics.	

Detailed Syllabus:

S.No.	Title	Content details	Credit
			Hrs.
Unit 1	Introduction	Friction, wear and lubrication, types of engineering contacts: conforming and	4
		non-conforming, types of relative motion: rubbing, sliding, oscillating and	
		rolling, Surface interactions, elastic and plastic deformations, properties of	
		materials, surface energy and flash temperature theory	
Unit 2	Friction	Laws of sliding friction, concept of adhesion, Tabor's model of friction, elastic	4
		thermo friction, rolling friction, measurement of friction.	

			1
Unit 3	Wear	Laws of wear, Types of wear such as adhesive, delamination, abrasive, fatigue,	10
		corrosive, fretting, erosive, electrical and oxidative. Measurement of wear in dry	
		and different environments. Prevention and control of wear and friction in	
		machines, wear of cutting tool and dies, study of abrasion in grinding, lanning	
		and honing	
Unit A	Lubrication	Machanisms of lubrication Roundary Squarza film hydrodynamic and elasto	6
Unit 4		hudro demonia and hudro statia lubrication plasta hudro demonia lubrication	0
		nyuro-dynamic and nyuro static lubrication, plasto nyurodynamic lubrication,	
		Solution of Reynolds's equation in two and three-dimensional flow. Pressure	
		distribution load carrying capacity friction forces in oil film and Co-efficient of	
		friction in joumal bearing. Sold lubricants types and applications.	
Unit 5	Bearing	Design of bearing : Clearance in journal bearing, minimum film thickness,	6
	design	sommar-field Number, Oil grooves and flow of oil in axial and circumferential	
	-	grooves cavitations and turbulence in oil bearings. Heat generation and cooling	
		of bearings. Hydrostatic and dynamic bearings and their applications in machine	
		tools. Design of air bearing and other gas bearings.	
Unit 6	Rolling	Revnold's slip, Heathe cote slip, selection of roller bearings and their methods of	4
	friction	lubrication, design aspects and modes of bearing failures and elasto hydro	
		dynamic lubrication	
11	C - 1' -1	Colored to the light of the second of the se	2
Unit 7	50110	Categories and Applications in metal forming processes. Characteristics of an	Z
	lubricants	ideal solid lubricant.	

- 1. Tribology Principles and Design Applications by R. D. Arnell, P.B.Davies, J. Halling and T.L.Whomes (Springer-Verlag)
- 2. Tribology in industries by Sushil Kumar Srivastava (S. Chand & Company Ltd.)
- 3. Fundamentals of Tribology by S.K.Basu, S.N. Sengupta and B.B.Ahuja (PHI learning private limited)

References:

- 1. Tribology Data Handbook : An Excellent Friction, Lubrication and Wear Resource by E.Richard Booser, (CRC Press-Taylor and Francis Group)
- 2. Friction, Wear, Lubrication by Kenneth C.Ludema and Oyelayo O.Ajayi, (CRC Press-Taylor & Francis Group)
- 3. Mechanical wear fundamentals and testing by Raymond G.Bayer, (CRC Press-Taylor & Francis Group)
- 4. Handbook of lubrication and tribology by Robert W.Bruce, (CRC Press-Taylor & Francis Group)

SUBJECT CODE: MPE-114 SUBJECT NAME: INDUSTRIAL ROBOTIC DESIGN

		,
Programme: M. Tech. (PE)		L: 3 T: 0 P: 0
Semester: 2		Teaching Hours: 36
Theory/P	ractical: Theory	Credits: 3
Internal M	Marks: 50	Percentage of Numerical/Design/Programming Problems: 05%
External	Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total Mar	r ks: 150	Status: Program Elective IV
Additional	Material Allowed	in ESE: Scientific Calculator
On comple	tion of the course,	the student will have the ability to:
CO#.	Course Outcomes	(Cos)
1	identify potential a	reas for automation and justify need for automation
2	select suitable maj	or control components required to automate a process or an activity
3	translate and simu	late a real time activity using modern tools and discuss the benefits of automation.
4	explain the basic p	rinciples of Robotic technology, configurations, control and programming of Robots.
5	design an industria	ll robot which can meet kinematic and dynamic constraints.
6	choose the approp	riate Sensor and Machine vision system for a given application.

Detailed Syllabus:

Sr. No	Title	Content Details	Credit Hrs.
Unit 1	Introduction	Automation and Robotics, Robot anatomy, robot configuration, motions joint notation work volume, robot drive system, control system and dynamic performance, precision of movement. Control System and Components: basic concept and medias controllers control system analysis, robot activation and feedback components. Positions sensors, velocity sensors, actuators sensors, power transmission system	6
Unit 2	Motion Analysis and Control	Manipulator kinematics, position representation forward transformation, homogeneous transformation, manipulator path control, robot dynamics, configuration of robot controller.	7
Unit 3	End Effectors	Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design. SENSORS: Desirable features, tactile, proximity and range sensors, uses sensors in robotics. Machine Vision: Functions, Sensing and Digitizing-imaging, Devices, Lighting techniques, Analog to digital single conversion, image storage, Image processing and Analysis-image data reduction, Segmentation feature extraction. Object recognition, training the vision system, Robotics application.	7
Unit 4	Robot Programming	Lead through programming, Robot programming as a path in space, Motion interpolation, WAIT, SINONAL AND DELAY commands, Branching capabilities and Limitations. Robot Languages: Textual robot Languages, Generation, Robot language structures, Elements in function.	8
Unit 5	Robot Cell Design and Control	Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work design, Work and control, Inter locks, Error detect ion, Work wheel controller. Robot Application: Material transfer, Machine loading/unloading. Processing operation, Assembly and Inspection, Feature Application.	8

Text Books

- 1. Automation, Production System & Computer Integrated by Groover Prentice Hall India Manufacturing
- 2. Principles of Automation & Automated Production Process Malov and IvanovMir Publication
- 3. Automation in Production Engineering Oates and Georgy Newness
- 4. Robotics K.S. Fu, R.C. Gonzalez, C.S.G. Lee ,McGraw Hill
- 5. Robotics, J.J. Craig Addison-Wesely
- 6. Robot Engineering: An Integrated Approach R.D. Klafter. Prentice Hall India,

Reference Books

- 1. Robotics for Engineers -YoramKoren, McGraw Hill International, 1st edition, 1985.
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012.
- 3. Robotic Engineering An Integrated approach, Klafter, Chmielewski and Negin, PHI, 1st edition, 2009.
- 4. Introduction to Robotics- John J. Craig, Addison Wesley Publishing, 3rd edition, 2010.
- 5. Stochastic Models of Manufacturing Systems Buzacott & shanty Kumar, Prentice Hall India

	SUBJECT CODE: MPE-115
SUB	ECT NAME: NON-CONVENTIONAL MACHINING PROCESS
Programme: M Tech (PF)	Ι. 3 Τ. Ο Ρ. Ο

Programme: M. Tech. (PE)	L:31:0 P:0
Semester: 2	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total Marks: 150	Status: Program Elective IV

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	understand the evolution, classification and need of nontraditional machining technology
2	understand and demonstrate the process principle and physical description; apply the parametric effect on process performance; solve problems related to process modeling, selection and material removal mechanics of mechanical energy based processes
3	understand and demonstrate the process principle and physical description; apply the parametric effect on process performance; solve problems related to process modeling, selection and material removal mechanics of thermal and electro-thermal energy based processes
4	understand and demonstrate the process principle and physical description; apply the parametric effect on process performance; solve problems related to process modeling, selection and material removal mechanics of chemical and electro-chemical energy based processes
5	access possibilities for hybrid nontraditional machining processes
6	apply the applications of various non-conventional processes in appropriate field by considering their advantages and disadvantages.

Detailed Syllabus:

S.No.	Title	Content details	Credit
			Hrs.
Unit 1	Basics of non-	Need of non-conventional machining in comparison to conventional	2
	conventional	machining processes, classification of non-conventional machining processes	
	machining	based upon energy type, mechanics of material removal and energy source.	
	processes		
Unit 2	Mechanical	Abrasive jet machining, Water jet machining, and Ultrasonic machining:	8
	processes	Introduction, mechanics of process, process parameters, machining	
	•	characteristics, abrasive jet machines, process capability, applications,	
		limitations and advantages.	
Unit 3	Thermal and	Electric discharge machining: Mechanism of metal removal, spark erosion	12
	electro-	generators, electrode feed control, machine tool selection, selection of tool	
	thermal energy	material and tool design, applications, future trends.	
	based	Plasma arc machining : Mechanics of material removal, process parameters,	
	processes	type of torches, equipment, safety precautions	
	-	Electron beam machining: Generation and control of electron beam, thermal	
		and non-thermal type electron beam machining, process capabilities and	
		limitations.	
		Laser beam machining: Apparatus, material removal, thermal analysis,	
		metallurgical effects, advantages, limitations.	
Unit 4	Chemical and	Electrochemical machining : Electrochemistry of process, electrochemical	10
	electro-	machining plant, process advantages, applications, limitations	
	chemical	Electrochemical grinding, de-burring, honing: Material removal, accuracy,	
	energy based	advantages, applications	
	processes	Chemical machining: Elements of the process, resists, etchants, advantages	
	F	and applications	
Unit 5	Hybrid	Hot machining, High velocity forming of metals. explosive forming : principles	4
	nontraditional	and applications.	-
	machining		
	processes		

Text Books

- 1. Modern machining processes- P C Pandey and H S Shan (Tata McGraw-Hill publishing company limited)
- 2. Manufacturing Science- Amitabha Ghosh and Asok Kumar Mallik (East-West press private limited)
- 3. Non-traditional manufacturing processes- Gary F. Benedict (Taylor & Francis)
- 4. Advanced methods of machining- J.A.McGeough (Springer)

Reference Books

1. Advanced machining processes (Nontraditional and hybrid machining processes)- Hassan EI-Hofy (McGraw-Hill)

SUBJECT CODE: MPE-116 SUBJECT NAME: COMPUTER AIDED DESIGN

Programme: M. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 2	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total Marks: 150	Status: Program Elective IV

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	describe the role of computer systems in design and manufacturing.
2	understand and create geometric models by using various techniques of geometric modeling.
3	apply geometric transformations on different models entities.
4	describe the key concept of NC/CNC/DNC.
5	create and validate NC part program data using manual data input.
6	evaluate integration of CAD/CAM and business aspects in an industry.

Detailed Syllabus:

S.No.	Title	Content details	Credit
Unit 1	Introduction	CAD/CAM contents and tools; history of CAD/CAM development; CAD/CAM market trends; Definition of CAD/CAM tools, Industrial look at CAD/CAM.	2 2
Unit 2	CAD/CAM Hardware	Introduction; types of systems; CAD/CAM systems evaluation criteria; input devices; output devices, hardware integration and networking; hardware trends.	2
Unit 3	CAD/CAM Software	Introduction; graphics standards; basic definition and modes of graphic operations; user interface; software modules, modelling and viewing; software documentation; software development; efficent use of CAD/CAM Software; Software trends.	4
Unit 4	Microprocessor based CAD/CAM	Introduction; several features, system implementation; hardware components and configuration; micro-based CAD software; file translation; operating systems, mechanical applications; micro-CAD trends; product distribution trends.	4
Unit 5	Mathematical Representation of Curves	Introduction; wire frame models; wire frame, entities, curves representation, parametric representation of analytical and synthetic curves, curve, manipulation; design and Engineering applications.	5
Unit 6	Mathematical Representation of Surfaces	Introduction, surface models, surface entities, surface representation, parametric representation of analytic and synthetic surfaces, surface manipulation.	4
Unit 7	Mathematical Representation of Solids	Introduction, solid models, solid entities, solid representation, fundamentals of solid modelling, half –spaces; boundary representation; constructive solid geometry sweep representation, solid modelling based applications; design and engineering applications.	4
Unit 8	Geometric Transformation s	Introduction; transformation of geometric models, mappings of geometric models; inverse transmission and mappings; projections of geometric models; design and Engineering applications.	4

Unit 9	Mechanical Assembly and Tolerancing	Introduction; assembly modelling, representative schemes, generation of assembling sequences; tolerance concepts.	4
Unit 10	Part Programming and Manufacturing	NC, CNC and DMC machines, part programming, manufacturing processes, process planning, tool path generation; design and Engineering applications.	3

- 1. CAD/Cam by Mikell P. Groover Mecry Wo Elimmers, Jr. 1991.
- 2. The CAD/Cam Hand Book by Bedford Masa Chusetles.
- 3. Automation, Production Systems, and Computer Aided Manufacturing, Prentice Hall by Groover M.P.
- 4. Numerical Control and Computer Aided Manufacturing by Pressman, R.N. and William, J.E. John Wiley & Sons New York.
- 5. CAD/CAM Theory and practise by Ibrahim Zeid; Tata McGraw Hill, New Delhi (1998)

SUBJECT CODE: LMPE-103

SUBJECT NAME: ADVANCED WELDING PROCESS LABORATORY

Programme: M.Tech. (PE)		L: 0 T: 0 P: 4
Semest	er: 2	Teaching Hours:4
Theory	/Practical: Practical	Credits: 2
Interna	l Marks: 50	Percentage of Numerical/Design/Programming Problems: Nil
Externa	l Marks: 50	Duration of End Semester Exam(ESE): 1.5 hr
Total M	arks: 100	Status: Compulsory
On Completion of the course, the student will have the ability to:		
CO #		Course Outcomes(CO)
1	analyze the working	of various advanced welding processes
2	understand the advar	ntages and limitations of advanced welding processes
3	evaluate performance of various components involved in advanced welding processes	
4	check the proper working of various advanced welding processes	
5	measure/determine	the changes in the output due to change in certain input conditions
6	explain the phenome	enon of various advanced welding processes

S. No.	Experiment
1	To study TIG welding and pulsed TIG welding process and its parameters
2	To perform friction and friction stir welding of thermoplastics
3	To compare mode of metal transfer in MIG and TIG welding process
4	To determine arc efficiency in TIG welding
5	To perform metal arc welding by varying input parameters
6	To perform spot, seam welding for given job and its process parametric optimization

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: LMPE-104

SUBJECT NAME: MECHANICAL AND MORPHOLOGICAL CHARACTERIZATION LABORATORY

Semester: 2 Teaching Hours:4	
Theory/Practical:PracticalCredits: 2	
Internal Marks: 50 Percentage of Numerical/Design/Programming Prob	lems: Nil
External Marks: 50 Duration of End Semester Exam(ESE): 1.5 hr	
Total Marks: 100Status: Compulsory	

On Completion of the course, the student will have the ability to:

CO#	Course Outcomes(CO)
1	analyze the working of various mechanical testing
2	understand the advantages and limitations of tensile testing
3	evaluate performance of various components involved in morphological testing
4	understand the working of metallurgical microscope
5	understand destructive/ non-destructive methods for characterization
6	explain the phenomenon of deformation via morphological characterization

S. No.	Experiment
1	To perform tensile testing of standard specimens for measurement of Young's modulus, peak strength etc.
2	To perform compression testing of standard specimens for evaluation of compressive strength
3	To perform impact testing of standard samples
4	To perform flexural testing of standard samples
5	To study working and operation of tool makers microscope for morphological analysis
6	To study working of metallurgical microscope for evaluation of porosity.

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: MAC-106 SUBJECT NAME: PEDAGOGY STUDIES

Programme: M. Tech. (PE)	L: 2 T: 0 P: 0		
Semester: 2	Teaching Hours: 16		
Theory/Practical: Theory	Credits: 0		
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 0%		
External Marks: Nil	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 50	Status: Audit Course 2		
Additional Material Allowed in ESE: Scientific Calculator			
On completion of the course, the student will have the ability to understand:			
CO#. Course Outcomes	(Cos)		
1 what pedagogical p	ractices are being used by teachers in formal and informal classrooms in developing		

L	what pedagogical practices are being used by teachers in formal and mormal classiforms in developing
	countries?
2	what is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what
	population of learners?
3	how can teacher education (curriculum and practicum) and the school curriculum and guidance materials
	best support effective pedagogy?

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Introduction	Aims and rationale, Policy background, Conceptual framework and	4
	Methodology	framework, Research questions, Overview of methodology and Searching.	т
Unit 2	Thematic	Pedagogical practices are being used by teachers in formal and informal	2
onic 2	overview	classrooms in developing countries, Curriculum, Teacher education.	1
	Evidence on	Methodology for the in depth stage: quality assessment of included studies,	
	the	how can teacher education (curriculum and practicum) and the school	
Unit 3	effectiveness	curriculum and guidance materials best support effective pedagogy?, Theory	4
	of	of change, Strength and nature of the body of evidence for effective	4
	pedagogical	pedagogical practices, Pedagogic theory and pedagogical approaches,	
	practices	Teachers' attitudes and beliefs and Pedagogic strategies	

Unit 4	Professional development	Alignment with classroom practices and follow up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.	4
Unit 5	Research gaps and future directions	Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.	2

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math's and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Programme: M. Tech. (PE) L: 3 T: 0 P: 0

SUBJECT CODE: MPE-117 SUBJECT NAME: OPERATIONS MANAGEMENT

Semester: 3		Teaching Hours: 36	
Theory/Practical: Theory		y Credits: 3	
Interna	l Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%	
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 150	Status: Program Elective V	
Addition	al Material Allov	ved in ESE: Scientific Calculator	
On comp	letion of the cou	rse, the student will have the ability to:	
CO#.	Course Outcom	es (Cos)	
1	Explain the scope and function of operations management.		
2	develop the functions of work and job design, facility and capacity planning.		
3	apply Production Planning and Control and maintenance management in the dynamic environment of an		
4	organization.		
- 4	apply the concept of Quality assurance in an organization.		
5	products in Industries.		
6	demonstrate purchasing, store management and inventory control techniques and evaluate different inventory alternatives/strategies.		
Detailed	Contents:		
S.No.	Title	Content details	Credit Hrs.
Unit 1	Operations Management (OM)	Introduction, History and decisions of Operations Management, Production functions.	4
Unit 2	Work and Job design	Work design (Techniques-Work study and Method Study), Job Design (Design, Environmental and Organizational factors, Behavioral dimensions of job design, Socio-technical approach to job design).	4

Unit 3	Facilities planning	Importance of Facilities Planning, Product and Process selection, Facilities Location, facilities layout and materials handling.	4
Unit 4	Capacity planning	Capacity Planning (Introduction, Measurement of Capacity Planning, Capacity Utilization and Efficiency, Estimate Capacity Requirements, Estimating Future Capacity Needs, Factors Influencing Effective Capacity).	4
Unit 5	Production Planning and Control (PPC)	Introduction and Need of Production Planning and Control, Objectives, Phases and Functions of Production Planning and Control, parameters for PPC.	4
Unit 6	Maintenance Management	Terotechnology, Objectives of Maintenance, Types of Maintenance Systems, Total Productive Maintenance.	4
Unit 7	Quality assurance	Quality, Quality Management, Quality Assurance v/s Quality Control, Quality Assurance Systems, Components of Quality Assurance, quality circles formation and procedure.	4
Unit 8	Material Management	Purchase system and purchase principles, Inventory Management, Stores management, Standardization, Codification and variety reduction, Waste management.	4

- 1. Chunawala Patel, "Production and Operation Management", Himalya Publishers., 1995.
- 2. Bhagde, S.D, "Production and Materials Management", U.S.G Publishers, 1995.
- 3. Plossl, G.W& Wight, O.W., "Production and Inventory Control", Prentice Hall, 1967.

Additional Books:

- 1. Chary, S.N., "Production and Operations Management", Tata McGraw Hill.
- 2. Jae K. Shim, "Operations Management", Barron's Educational Series, 1999.

E-Books:

- 1. Gifford, Charlie, "Hitchhiker's Guide to Operations Management", International Society of Automation [ISA]. 2007.
- 2. Jain K.C., Verma P.L., Kartikey P., "Production and Operations Management",

SUBJECT CODE: MPE-118		
SUBJECT NAME: MATERIALS MANAGEMENT		
Programme: M. Tech. (PE)	L: 3 T: 0 P: 0	
Semester: 3	Teaching Hours: 36	
Theory/Practical: Theory	Credits: 3	
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 20%	
External Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 150	Status: Program Elective V	

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	explain the scope and function of material management.
2	develop the functions of purchasing, inventory management and receiving & shipping.
3	apply business functions in the dynamic environment.
4	explain inventory control techniques and evaluate different inventory alternatives/strategies
5	analyze distinct concepts within material management and explain how these can be use materials and
	products in Industries.
6	apply the concept of store management in an organization.
Detailed	Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Material Management	Scope and importance of materials and inventory Management, Functions and objectives of material Management. Introduction to Material Planning, Factors affecting Material Planning, Classification and Codification of Materials, Standardization and Simplification.	6

Unit 2	Purchasing	Introduction to Purchasing, Classification of Purchases, Principles of Scientific Purchasing, Objectives and functions of purchasing, Purchase Techniques, Purchasing Procedure, Quality considerations in purchasing.	6
Unit 3	Material Handling	Primary Handling activities- Receiving, In-storage Handling and shipping, Basic Handling Considerations, receiving functions.	6
Unit 4	Inventory Control	Inventory Costs, Inventory Classification, Inventory Management, Demand of Inventory, , lead time, stock outs, Lot Sizing, Push System vs. Pull System Inventory Control, Inventory Control Systems, Basic Stock Control Methods, Economic Order Quantity (EOQ) Models, Deterministic and Stochastic Models, EOQ and Quantity Discount, EOQ Model with Non-Instantaneous Receipt, EOQ Model with Planned Shortages, Finding the Optimal Order & Back Order Level Production Lot Size with Planned Shortages, simulation models for inventory analysis.	10
Unit 5	Store Management	Concept, Responsibilities and functions of store management, Types of stores, Coding, Store Accounting and Store Verification, Management of Surplus, Scrap and Obsolete Items.	8

- 1. Bhagde, S.D, "Production and Materials Management", U.S.G Publishers, 1995.
- 2. Plossl, G.W& Wight, O.W., "Production and Inventory Control", Prentice Hall, 1967.
- 3. Mahajan, M., "Industrial Engineering and Production Management", Dhanpat Rai & Co., 2007.

Additional Books:

- 1. Chary, S.N., "Production and Operations Management", Tata McGraw Hill.
- 2. Arora, K.C., "Production and Operations Management", Laxmi Publications.

SUBJECT CODE: MPE-119 SUBJECT NAME: ADVANCE OPERATIONS RESEARCH

D		
Program	ne: M. Tech. (PE)	L:3 I:0 P:0
Semester	: 3	Teaching Hours: 36
Theory/P	ractical: Theory	Credits: 3
Internal M	/arks: 50	Percentage of Numerical/Design/Programming Problems: 95%
External N	Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total Mar	• ks: 150	Status: Program Elective V
Additional	Material Allowed	in ESE: Scientific Calculator, Random Number Table, Normal Distribution Table
On comple	tion of the course,	the student will have the ability to:
CO#.	Course Outcomes	(Cos)
1	analytical use methods such as mathematical programming, queuing theory, multi criteria analysis	
	which are helpful in assessing the various practical problems with the appropriate logical structure.	
2	enhance the skill of Postgraduate students in clarifying critical data elements and their role as model	
	inputs.	
3	solve the networking problems in various projects which are time dependent	
4	enhance the Decision making process of engineering on the basis of mathematical modeling	
5	evaluate different a	alternatives of Transportation and Assignment Models
6	design and evaluat	e different simulation techniques

Detailed Contents:

Sr. No	Title	Content Details	Credit Hrs.
Unit 1	Introduction	Definition, characteristics, objectives and necessity, scope of operation research. History of operation research, Various Applications in different fields of Engineering.	2

Unit 2	Linear Programming	Introduction to linear programming, formulation of linear programming problems, graphical solution, he Theory of simplex solution, alternative optimal solution, unbounded solutions, infeasible solutions, simplex algorithm & method, Method of Penalties, Two Phase Method, Duality & Sensitivity Analysis, limitations of linear programming, revised simpler method	6
Unit 3	Transportation & Assignment Model	Definition of transportation model, formulation and solution methods, and degeneracy in transportation problems. Traveling salesman model, Assignment model, comparison with transportation model, formulation and solution methods, and their industrial applications	5
Unit 4	Queuing Models	Application of queuing models, characteristics of queuing models, single channel queuing theory, solution to single channel with poison arrivals and exponential service infinite population model, limited and unlimited service, Queuing with parallel channels with limited and unlimited service. Bulk input, bulk service, priority queue discipline, queues in series,.Industrial applications of queuing theory, Queues Models:	4
Unit 5	Dynamic programming	Dynamic Optimisation Models, Dynamic programming, principles of optimality, characteristics of dynamic programming problem, deterministic programming models for solution of investment problem, allocation problem, production scheduling and equipment replacement problem, probabilistic dynamic programming.	5
Unit 6	Decision Theory	Decision-making environments: Decision-making under certainty, uncertainty and risk situations; Uses of Decision tree,	3
Unit 7	Game Theory	Game Theory: Concept of game; Two-person zero-sum game; Pure and Mixed Strategy Games; Saddle Point; Odds Method; Dominance Method and Graphical Method for solving Mixed Strategy Game -Sequencing Problem: Johnsons Algorithm for n Jobs and Two machines, n Jobs and Three Machines, Two jobs and m Machines Problems., Brown's algorithm.	4
Unit 8	Simulation	Concept and use of simulation, advantages and limitations of the simulation technique, generation of random numbers, Monte-Carlo simulation, computer-aided simulation: applications in maintenance and inventory management. Simulation Models: Generation of Random number. Use of Computers for system simulation.	3
Unit 9	Network Analysis	Work breakdown structure, network logic, critical path, CPM and PERT, slack and floats. Resourses Leveling & Time cost trade off	4

- 1. P.K. Gupta and D.S.Hira, "Operations Research ", S. Chand and company
- 2. A.H. Taha, "Operation Research", Macmillan Publishing Company
- 3. Operation research by Manohr Mahajan (Dhanpat Rai& Co. Publisher)

Reference Books

- 1. W.D. Miller and M.K Starr, "Executive Decisions and operations Research", ,Prentice Hall Inc, Eglewood Cliffs, N.J,
- 2. Vijay Gupta Bhushan Kumar K.K.Chawla, "Applied Operation research", KalyaniPublishers
- 3. R. K. Gupta, "Operations Research", Krishna publishers

SUBJECT CODE: MPE-120 SUBJECT NAME: INDUSTRIAL SAFETY

Program	nme: M. Tech. (PE)	L: 3 T: 0 P: 0	
Semeste	er: 3	Teaching Hours: 36	
Theory	/Practical: Theory	Credits: 3	
Interna	l Marks: 50	Percentage of Numerical/Design/Programming Problems: 0%	
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 150	Status: Open Elective 1	
Additional Material Allowed in ESE: Scientific Calculator			
On comp	letion of the course,	the student will have the ability to:	
CO#.	Course Outcomes (Cos)	
1	explain the basic terminology, legislation and standards involved in Industrial Safety.		
2	recognising the factors contributing towards Industrial Hazards and Accidents.		
3	apply various preventive measures to ensure Industrial Safety.		
4	demonstrate the concept of Wear and Corrosion and their prevention.		
5	identify of faults in machine tools and their general causes		
6	demonstrate the con	cept of Periodic and preventive maintenance.	

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Industrial safety	Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.	6
Unit 2	Fundamental s of maintenance engineering	Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.	6
Unit 3	Wear and Corrosion and their prevention:	Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.	8
Unit 4	Fault tracing	Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.	8
Unit 5	Periodic and preventive maintenance	Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: i. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance. Repair cycle concept and importance.	8

Text Books:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

SUBJECT CODE: MPE-121 SUBJECT NAME: OPERATIONS RESEARCH

		,	
Programme: M. Tech. (PE)		L: 3 T: 0 P: 0	
Semester: 3		Teaching Hours: 36	
Theory/Practical: Theory		Credits: 3	
Internal Marks: 50		Percentage of Numerical/Design/Programming Problems: 0%	
Externa	l Marks: 100	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 150		Status: Open Elective 1	
Addition	Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:			
CO#.	Course Outcomes (Cos)		
1	apply the dynamic programming to solve problems of discreet and continuous variables.		
2	apply the concept of non-linear programming.		
3	carry out sensitivity analysis.		
4	model the real world problem and simulate it.		

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Introduction	Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models.	8
Unit 2	Linear Programming Problem (LPP)	Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming.	6
Unit 3	Nonlinear programming	Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT.	6
Unit 4	Scheduling and sequencing	single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming	8
Unit 5	Competitive Models	Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation.	8

Text Books:

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

SUBJECT CODE: MPE-122

SUBJECT NAME: COMPOSITE MATERIALS

Programme: M. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 3	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 50	Percentage of Numerical/Design/Programming Problems: 0%
External Marks: 100	Duration of End Semester Exam(ESE): 3hr
Total Marks: 150	Status: Open Elective 1

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)			
1	identify, describe and evaluate the properties of fibre reinforcements, polymer matrix materials an			
	commercial composites.			
2	develop competency in one or more common composite manufacturing techniques, and be able to select			
	the appropriate technique for manufacture of fibre-reinforced composite products.			
3	analyse the elastic properties and simulate the mechanical performance of composite laminates; and			
	understand and predict the failure behaviour of fibre-reinforced composites.			
4	apply knowledge of composite mechanical performance and manufacturing methods to a composites			
	design project			
5	critique and synthesise literature and apply the knowledge gained from the course in the design and			
	application of fibre-reinforced composites.			

Detailed Contents:

S.No.	Title	Content details	Credit Hrs.
Unit 1	Introduction	Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.	8
Unit 2	Reinforcements	Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.	6
Unit 3	Manufacturing of Metal Matrix Composites	Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.	6
Unit 4	Manufacturing of Polymer Matrix Composites	Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.	8
Unit 5	Strength	Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.	8

Text Books:

- 6. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 7. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

References:

- 4. Hand Book of Composite Materials-ed-Lubin.
- 5. Composite Materials K.K.Chawla.
- 6. Composite Materials Science and Applications Deborah D.L. Chung.
- 7. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.
