Elective Subjects Design & Manufacturing Engineering Group 7th Semester

SUBJECT CODE: PEMP-109 SUBJECT NAME: PLASTIC AND CERAMICS TECHNOLOGY

Discourse D. Tesh. ME(D) L. 4 Te 0. De 0			
Frogramme: B. Tech. ME(P)) $L:41:0P:0$	
Semester: 7		Teaching Hours: 48	
Theory/Practical: Theory		Credits: 4	
Internal Marks: 40		Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 100	Status: Elective III	
Additiona	al Material Allowed	in ESE: Scientific Calculator	
On comp	letion of the course,	the student will have the ability to:	
CO#.	Course Outcomes	(Cos)	
1	Describe mechanic	al & physical properties of plastics.	
2	Carry out various p	olymer processing techniques.	
3	Use mechanical fas	stening, vibration welding, induction welding methods for joining and as	sembling
	of plastics.		
4	Design moulded pr	oducts, wall thickness, fillets etc. for plastic and ceramic components.	
5	Demonstrate castin	g of acrylics, polyesters etc.	
6	Describe the indust	rial application and limitations of ceramic processing techniques.	
Detailed (Contents:		~ 7
S.No.	Title	Content details	Credit
T T 1 / 1		(Part A)	Hrs.
Unit I	Glossary of	Thermoplastics and thermo sets, their properties. Mechanical &	0
	Terms	physical properties of plastics. Selection of plastics for different uses	
	Associated with	and their limitations.	
	Plastic		
	Engineering		_
Unit 2	Polymer	Extrusion, compression and transfer moulding. Injection moulding,	7
	Processing	blow moulding, thermoforming, rotational moulding, calendaring, Bag	
TT 14 0	Techniques	moulding reaction moulding.	(
Unit 3	Joining and	Mechanical fastening, fusion bonding, hot-gas welding, vibration	0
	assembling of	welding, solvent bonding, ultrasonic welding, induction welding,	
TT •4 4	plastics		4
Unit 4	Design of	Compression moulds, transfer moulds, injection moulds, runner and	4
	moulds for	gate design, vents	
	thermoset	Dout D	
		Fall D Design of moulded products well thickness fillets and radii ribs	
Unit 5	Design	under oute drafts holes threads inserts parting lines surface treatment	7
Unit 5	Design	mould design for avoiding warmage	/
	Standarda for	Introduction design consideration general tolerances direct tolerances	
Unit 6	Toloronoog on	tolerancing of draft angles, moulding shrinkage, moulding meterial	6
Unito	noulded articles	stiffnoss	U
In:t 7	Costing	Summess.	1
Umt /	Castilly	Common coronics, Crystal structures, Dinary, and tornary, coronics	4
	Coromics and	Silicates clave graphite and carbides. Constal Properties of caramics.	
Um:4 0	verannes and	Deformation and aroan Taughaning Machanica Commission	o
Umto	non-ceramic	techniques material selection for several applications and industrial	ð
	phases	application limitations of according	
		application, initiations of cerannes.	

Text Books:

- 1. A.W. Birley, B. Howarth, "Mechanics of plastics processing properties", Hana Publisher edition, 1991.
- 2. J.E. Mark, R. West, H.P. Allocock, "Inorganic Polymers", Prentice Hall, 1992.

3. Fried ,"Poly. Science and Technology", Prentice Hall

Additional Books:

- 1. Charles Harper, "Handbook of Plastics Technologies", McGraw-Hill.
- 2. Plastic Engg. Data Book, Glanill.

SUBJECT CODE: PEMP-110 SUBJECT NAME: Finite Element Method

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective III

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos):
1.	Describe and explain the application and utility of FEM
2.	Demonstrate FEM, general analysis procedural algorithm and able to define shape functions.
3.	Solve 1D and 2D analysis problems understanding boundary conditions and shape functions
4.	Analyze any type of body like truss, beam, and frame with FEM.
5.	Solve and analyses problems involving dynamic considerations.
6.	Solve the equations formed in analysis procedure using different methods

S No	Title	Content details	Credit
5.110.	The	(Part A)	Hrs.
Unit 1	Introduction	General description of the method, Brief history of FEM, FEM v/s	
		Classical Method, FEM v/s FDM, Brief explanation of FEA for a stress	5
TI:4 0	X 7 4	analysis problem.	
Unit 2	vectors,	introduction to matrices, vector spaces, Definition of tensors, the	_
	Matrices, and	symmetric Eigen problem, Matrix displacement equations, Solution of	5
	Tensors:	matrix displacement equations.	
Unit 3	Basic	Introduction, Stresses in a typical element, Equations of equilibrium,	
	Equations in	strains, strain displacement equations, linear constitutive law.	4
	Elasticity:		
Unit 4	Shape	Introduction, Element shapes, nodes, nodal unknowns, Coordinate	
	Functions	systems, Polynomial shape functions, Convergence requirements of shape	0
		functions, derivation of shape functions using polynomials, finding shape	ð
		functions using lagrange polynomials	
		Part B	
Unit 5	Strain	Strain displacement matrix for bar and CST element, Strain displacement	
	Displacement	relation for beam element, Assembling stiffness equation by direct	
	Matrix and	approach, galerkin's method, virtual work method and variational method.	6
	Assembling		U
	Stiffness		
	Equation		

Unit 6	Discritization of a Structure	Nodes as discontinuities, Refining mesh, Use of symmetry, Finite representation of infinite bodies, Element aspect ratio, Higher order element v/s Mesh refinement.	8
Unit 7	Finite Element Analysis – Bars, Trusses, Beams and Shells	Tension bars/columns, Two dimensional trusses, plane stress and plane strain problems, beam analysis using two noded elements, Force on shell element, shell analysis.	6
Unit 8	Isoparametric Formulation	Introduction, Coordinate transformation, Basic theorems of iso parametric concept, Uniqueness of mapping, Iso parametric, Super parametric and Sub parametric Elements, Assembling stiffness matrix, Numerical integration.	6

- 1. D. L. Logan, "A First Course in the Finite Element Method", CL Engineering, 6th Edition, 2017.
- 2. Klaus-Jurgen Bathe, "Finite Element Procedures in Engineering Analysis", Prentice Hall, 2 nd Edition, 2014..
- 3. Klaus-Jurgen Bathe, "Finite Element Procedures in Engineering Analysis", Prentice Hall, 2 nd Edition, 2014..

Additional Books:

- 1. D. D. Hutton, "Fundamental of finite element analysis", McGraw Hill Publications, 1st Edition, 2003.
- 2. R. D. Cook, D. D. Malkus, M. E. Plesha and R. J. Witt, "Concepts and Applications of Finite Element Analysis", John Wiley Publications, 4 th Edition. 2002

SUBJECT CODE: PEMP-111

SUBJECT NAME: Automobile Engineering

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective III

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Identify the different parts of the automobile
2	Explain the working of various parts like engine, transmission, clutch, brakes
3	Describe how the steering and the suspension systems operate.
4	Understand the environmental implications of automobile emissions
5	Develop a strong base for understanding future developments in the automobile industry
6	To describe environmental impact of emissions from vehicles and methods for controlling it.
D (11 1)	

S No	Title	Content details	Credit
5.110.		(Part A)	Hrs.
	Introduction:	Basic structure, general layout and type of automotive vehicles, Frameless	4
Unit 1		and unitary construction; position of power unit. Classification of	
		vehicles, options of prime movers, transmission and arrangements.	
Unit 2	Transmission	Basic requirements and standard transmission systems; constructional	6
Unit 2	system:	features of automobile clutch, gear box, differential, front and rear axles;	

		overdrives, propeller shaft, universal joint and torque tube drive; Rear wheel vs front wheel drive, principle of automatic transmission	
Unit 3	Lubrication and Cooling Systems	Necessity of lubrication; properties of lubricants; different types of lubricants and oil additives; various systems of lubrication - oil filters, oil pumps and oil pressure indicator; crank case ventilation and dilution. Purpose of cooling, air and water cooling systems; radiator, thermostat, pump and fan.	6
Unit 4	Braking System	Braking systems, layouts for mechanical braking, hydraulic braking, pneumatic braking, master cylinder, wheel cylinder, tandem cylinder, shoe brakes, disc brakes, requirements of brake fluid, power brakes, concept of ABS and traction control, parking brakes. Steering system, principles and need of steering, components parts, steering gear, steering ratio, steering lock, turning radius, centre point. Steering, wheel geometry, power steering principle and typical schemes, Front axle scheme and end connections, rear axle, functions, types of rear axle, loads on rear axles, axle casing.	8
		Part B	
Unit 5	Steering System	Requirement and steering geometry; castor action, camber and king pin angle, toe-in of front wheels, steering linkages and steering gears; wheel alignment; power steering, Ball re-circulating mechanism	4
Unit 6	Chassis and Suspension	Loads on the frame, considerations of strength and stiffness, engine mounting, independent suspension systems (Mac Pherson, Trailing Links, Wishbone), shock absorbers and stabilizers; wheels and tyres, tyre wear types, constructional details of plies Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.	6
Unit 7	Fuel Supply System:	Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.	4
Unit 8	Carburettors and Injection Systems:	carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.	4
Unit 9	Electric System and Maintenance:	Classification, Introduction to Conventional and transistorized ignition systems; Charging, capacity ratings and battery testing; starter motor and drive arrangements: voltage and current regulation Preventive maintenance, trouble shooting and rectification in different systems; engine tuning and servicing, major tools used for maintenance of automobiles	6

- **1.** W.H Crouse, Automotive mechanics, McGraw Hill.
- 2. J. Heitner, Automotive Mechanics, East West Press.
- **3.** Kirpal Singh, Automobile Engineering Vol. I and II, Standard Publishers.
- 4. J. Webster, Auto Mechanics, Glencoe Publishing Co.
- 5. Jain & Asthana, "Automobile Engineering", Tata McGraw-Hill, New Delhi, 2002.

Reference Books:

- 1. P.S Gill, Automobile Engineering, S.K Kataria.
- 2. Kamaraju Ramakrishna, "Automobile Engineering", PHI Learning, New Delhi, 1st Print, 2012.
- 3. Heinz Heisler, "Advanced Vehicle Technology", Elsevier, New Delhi, 2011.
- 4. Crouse & Anglin, "Automotive Mechanics", Tata McGraw Hill, New Delhi, 10th Edition 2007.

SUBJECT CODE: PEMP-112 SUBJECT NAME: INDUSTRIAL FINISHING

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective III

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)		
1	Describe the significance and applications of Industrial finishing processes.		
2	Demonstrate the mechanical finishing processes like blasting peening brushing etc.		
3	Work upon advanced finishing operation such as; Magnetic abrasive finishing, Chemo-Mechanical		
	polishing.		
4	Apply various coatings for the protection of materials.		
5	Use the techniques of hard facing, flame spray coating etc. during advanced machining processes.		
6	Utilize painting methods in finishing processes to enhance the life of material.		
	Detailed Contents:		

Credit
Hrs.
cations in
6
a spindle
g, spindle
ng, brush 9
ultrasonic
5
Chemo-
5
properties,
ectrolytes.
ment and 10
me spray
cal vapor 6
orush dip,
selection 7

Text Books:

- 1. B.F. Blumdell, "Introduction to Metal Finishing Equipment", Pergamon Press.
- 2. Tool and Manufacturing Engineer's handbook, Society of Manufacturing Engineers.
- 3. Modern Electroplating, John Wiley

Additional Books:

- 1. C.R.Martin, Technology of paints, Varnishes, and Lacquers, Van Nostrand Reinhold.
- 2. Electroplating Engineering Hand Book, Reinhold.

SUBJECT CODE: PEMP-113

SUBJECT NAME: NON DESTRUCTIVE TESTING

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective IV

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)	
1	Describe the appropriate NDT technique as per requirement.	
2	Apply various process parameters and control the NDT process for the desired output parameters.	
3	Find the internal flaws in the material by NDT and take measures to eliminate them.	
4	Solve various problems encountered like leakage, cracks, blowholes etc with the manufacturing	
	process by analyzing the data.	
5	Make use of modern tools and softwares for analyzing and solving real life problems.	
6	Introduce environmental friendly solutions to achieve organizational sustainability.	

Detailed Contents:

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
	Radiography	Principle of radiography, types of radiography, equipments for neutron	
Unit 1		radiography, x-ray radiography, equipments for x-ray radiography,	6
		advantages and applications of fluoroscopy and photo fluoroscopy.	
	Electromagne	Principle of electromagnetic testing, mathematical analysis, flaw	
Unit 2	tic methods	detection in conductors, various types' of instruments used and	8
		advantages of various electromagnetic methods for crack detection etc.	
	Ultrasonic	Principle of ultrasonic testing, generation of ultrasonic waves, equipment	
Unit 3	methods	details for ultrasonic checking, methods of wave propagation, methods	10
Omt 5		of flaw detection, various methods of ultrasonic testing, advantages of	10
		ultrasonic methods for flaw detection and crack location.	
		Part B	-
	Holography	Principle of holography, method of holographic recording, method of	
Unit 4		holographic reconstruction, advantages of this technique and	8
		applications of holographic methods for non-destructive testing.	
	Liquid	Principle of liquid penetrates testing, types of dyes and penetrants used	
Unit 5	penetrant	in this testing technique and application of liquids for detecting sub-	6
	testing	surface defects.	
	Magnetic	Principles of magnetic particle testing, details of equipments used and	
Unit 6	particle	methods of crack detection by magnetic particle testing Hardness testing:	
	testing	Brinnel hardness testing, Rockwell hardness tests, shore hardness testing,	10
		Vicker hardness testing and theory behind various hardness testing	
		methods.	

Text Books:

1. Malhotra, "Handbook on Non-destructive Testing of Concrete", Publisher: CRC Press, 2002.

2. Mix, Paul E, "Introduction To Nondestructive Testing: A Training Guide", John Wiley and Sons Ltd, 1999.

3. Blitz and Jack, "Electrical and Magnetic Methods of Nondestructive Testing", Institute of Physics Publishing, 2001.

Additional Books:

- 1. Achenbach, J D, "Evaluation of Materials and Structures by Quantitative Ultrasonics", Springer-Verlag Vienna, 2001.
- 2. Henrique L M, "Non Destructive Testing and Evaluation for Manufacturing and Construction", Hemisphere Publishers, New York, 2001.

SUBJECT CODE: PEMP-114 SUBJECT NAME: COMPUTER AIDED DESIGN & MANUFACTURING

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective IV

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Describe the role of computer systems in design and manufacturing.
2	Analyze the concept of geometric models and geometric transformations in manufacturing systems.
3	Design various part programs in NC/DNC/CNC systems.
4	Generate process plans with the help of machinability data systems.
5	Apply the concept of group technology and coding system in manufacturing systems.
6	Design plant layout with the help of FMS.

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction to CAD/CAM	Introduction to CAD/CAM and its role in Product design and development cycle; CAD/CAM system and its evaluation criteria ; advanced input and output devices, Display devices; Functions of a graphics package and Graphics standard GKS; IGES and STEP; Application areas of CAD.	4
Unit 2	Geometric Modeling	Need and types of Geometric Modeling: Wireframe; surface and solid modeling; Geometric Modeling Techniques: Boundary Representation (B-rep); Constructive Solid Geometry (CSG); Parametric Modeling Technique ; Mass; volumetric properties calculations; concepts of hidden-line removal and shading; Mechanical Assembly Kinematics analysis and simulation.	7
Unit 3	Geometric Transformati ons	Overview of Mathematics preliminaries; matrix representation of 2 and 3 dimensional transformation for translation; scaling; rotation about principal axes; mirror imaging about a plane; principal axes and origin; Concatenation of transformation matrices. Applications of geometric transformations.	6
Unit 4	Representatio n of curves and surfaces	Non-parametric and parametric representation of curves; Parametric representation of Hermit Cubic; Bezier curves; Uniform and Non uniform B-spline curves; Surface and its analysis. Representation of Analytical and synthetic surfaces (Bilinear Surface; Coons Surface Patch; Bi-cubic Surface Patch; Bezier Surface; Bspline surface).	8
Part B			

Unit 5	NC/CNC/DN C Machine Tools	NC machine tools- basic components coordinate systems; features of NC machine tools. Computerized Numerical Control (CNC): Tooling for NC machines - tool presetting equipment; flexible tooling; tool length compensation; tool path graphics; NC motion control system; Direct Numerical Control. Adaptive control in machining system.	8
Unit 6	CNC Part Programming	Basic terminology of Parts programming; Block format; Coordinate system; fixed/floating zero; types and classification of machine codes; Manual part programming; Computer aided and computer assisted part programming	6
Unit 7	Group Technology (GT)	Basic fundamentals of Group Technology; Part families; part classification and coding system: Group technology machine cells: Advantages of Group Technology.	6
Unit 8	Computer Aided Process Planning	Introduction and benefits of CAPP. Types of CAPP systems; machinability data selection systems in CAPP	3

- 4. Groover Mikell P., Emory W. Zimmer's, "CAD/CAM: Computer-Aided Design and Manufacturing", PHI, 2nd Edition, 1984.
- 5. Bedworth D. D., Henderson M. R& P.M. Wolfe, "Computer Integrated Design and Manufacturing", Tata McGraw Hill,2nd Edition, 1991.
- 6. Ibraham Z., "CAD/CAM Theory and Practice", Tata McGraw Hill, 2nd Edition, 2009.

Additional Books:

- 3. Rao P. N, "CAD/CAM Principles and Applications", Tata McGraw Hill, 2nd Edition, 2004.
- 4. Elanchezhian C., Selwyn Sundar T., Shanmuga Sunder G., "Computer Aided Manufacturing", Laxmi Publication, 2nd Edition, 2007.

Elective Subjects Industrial Engineering Group 7th Semester

SUBJECT CODE: PEMP-133 SUBJECT NAME: Supply Chain Management

Programme: B.Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 5%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective III

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand the concept of Supply Chain in an Organization
2	Understand the concept of Logistics in an Organization
3	Understand the concept of Supply and Demand forecast in an Organization
4	Understand the concept of the Role of Inventory in Supply Chain in an Organization
5	Analysis the barriers' in Supply Chain of an Organization
6	Understand the concept of Green Supply Chain in an Organization
D (11	

S. No.	Title	Content details(Part A)	Credit
			Hrs.
Unit 1	Evolution of	Essentials of SCM-structure of supply chain, examples-process views-	4
	Supply Chain	decision phases, issues - aligning supply chain with business strategy –	
		supply chain decision variables, performance measures- new challenges	
		- reverse logistics. Importance of supply chain, Supply chain	
		management and logistics, supply chain and the value chain, Competitive	
		advantage, supply chain and competitive performance, changing	
		competitive environment. Supply Chain drivers and obstacle	
Unit 2	Supply Chain	Factors involved - sourcing, models for strategic alliances – supplier	5
	Configuration	selection, outsourcing and procurement process – facility location and	
	Design	capacity allocation - modeling approaches LP. MILP - network design in	
		uncertain environment – evaluation using simulation models.	
Unit 3	Matching	The lead-time gap Improving the visibility of demand supply chain	5
Cint 5	Supply And	fulcrum Forecast for capacity execute against demand Demand	Ŭ
	Demand	management and aggregate planning Collaborative planning forecasting	
	Demana	and replenishment	
Unit 4	Responsive	Product 'push' versus demand 'pull' The Japanese philosophy	6
· · · ·	Supply Chain &	Foundations of agility Route man to responsiveness. Time-based	Ŭ
	Strategic Lead-	competition Lead-time concepts Logistics nineline management	
	Time	competition, Lead time concepts, Logistics piperine management.	
	Managamant		
	management	Part B	
Unit 5	Planning and	managing economies of scale in supply chain cycle inventory, managing	6
	Managing	uncertainty in supply chain, determining optimal level of product	-
	Inventories and	availability, transportation, facility design network design in a supply	
	Transportation	chain, extended enterprise and the virtual supply chain. Laving the	
	in a Supply	foundations for synchronization, 'Quick response' logistics. Production	
	Chain	strategies for quick response, Logistics systems dynamics.	

Unit 6	Managing Risk in the Supply Chain:	Vulnerability in supply chains, Understanding the supply chain risk profile, Managing supply chain risk, Achieving supply chain resilience.	5
Unit 7	Overcoming The Barriers To Supply Chain Integration	: Creating the logistics vision, Problems with conventional organizations, developing the logistics organization, Logistics as the vehicle for change, Benchmarking.	5
Unit 8	Green Supply Chain Management	Green supply Chains – Need for Green Supply Chains – Implications of modern supply chainmanagement – The supply chain strategy – Ingredients of green supply chain strategy. Evaluating the impact of GSCM activities on sustainability – Economic, Environmental and social improved GSCM Stages of GSCM - performance measurement.	6
Unit 9	Supply Chain Terminologies	CRM-SRM-e-business-RFID-supply chain collaboration-Decision Support System (DSS) for supply chain- selection of DSS for supply chain. Bullwhip Effect, Reverse Logistics, Available to Promise. Business Process Reengineering, Bottleneck, Computer Aided Logistics Support, Continuous Replenishment Program, Drum Buffer Rope Theory, Efficient Consumer Response, Just-in-Time, Hub and Spoke Concept, Milk Round System	6

1. Chopra, S. and Meindl, P. Supply Chain Management, Prentice Hall, (2010).

- 2. Christopher, M. Logistics & Supply Chain Management, FT Prentice Hall, (2011).
- 3. Taylor & Brunt, Manufacturing Operations and Supply Chain Management (The Lean Approach), Business Press Thomson Learning N.Youk.
- 4. Arjan J. Van Weele, Purchasing and Supply Chain Management (Analysis Planning and Practice), 2/Engineering, Business Press, Thomson Learning N.Youk.
- 5. Donalad Bowersox, Logistic Management The Integrated Supply Chain process, McGraw Hill, N.York

Reference Books

- 1. John T. Mentzer, J. T. Supply Chain Management, illustrated edition, SAGE Publications (2001).
- 2. Michael H. Hugos, M. H. Essentials of Supply Chain Management, John Wiley, (2011).
- 3. Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E. Designing and Managing the SupplyChain, McGraw Hill Higher Education. (2011).

SUBJECT CODE: PEMP-134

SUBJECT NAME: QUALITY AND RELIABILITY ENGINEERING

Programme: B.Tech.	L: 4 T: 0 P: 0	
ME(P)		
Semester: 7	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Elective III	
Additional Material Allowed in ESE: Scientific Calculator		

On completion of the course, the student will have the ability to:

On completion of the course, the student will have the ability to:		
CO#.	Course Outcomes (Cos)	
1	Develop in-depth knowledge of quality.	
2	Apply various quality controls tools in the industries to enhance the quality.	
3	Explain the concept of process capability.	

4	Develop analytical skills for investigating and analyzing quality management issues in the industry
	and suggest implementable solutions to those.
5	Know about the concepts of statistical theory of tolerances to design of tolerances.
6	Demonstrate and apply the concept of reliability.

Detailed Contents:

S No	Titla	Content details	Credit
D •110•	The	(Part A)	Hrs.
	Introduction	Definition of Quality, Quality function, Dimensions of Quality, Quality.	
		Engineering terminology, Brief history of quality methodology, Statistical	_
Unit 1		methods for quality improvement, Quality costs –four categories costs and	5
		hidden costs. Brief discussion on sporadic and chronic quality problems.	
		Introduction to Quality function deployment.	
	Quality	Definition and concept of quality assurance, departmental assurance	
Unit 2	Assurance	activities. Quality audit concept, audit approach etc. structuring the audit	6
0		program, planning and performing, audit activities, audit reporting,	Ũ
		ingredients of a quality program.	
	Statistical	Introduction to statistical process control –chance and assignable causes	
Unit 3	Process	variation. Basic principles of control charts, choice of control limits,	6
0	Control	sample size and sampling frequency, rational subgroups. Analysis of	Ũ
		patterns of control charts. Case Studies on application of SPC	
	Control	Controls charts for X bar and Range, statistical basis of the charts,	
	Charts for	development and use of X bat and R charts interpretation of charts. Control	
Unit 4	Variables	charts for X bar and standard deviation (S), development and use of X bat	6
		and S chart. Brief discussion on –Pre control X bar and S control charts	-
		with variable sample size, control charts for individual measurements,	
		moving-range charts.	
	Control	Controls chart for fraction non-conforming (defectives) development and	
	Charts for	operation of control chart, brief discussion on variable sample size. Control	
Unit 5	Attributes	chart for non-conformities (defects) –development and operation of control	6
		chart for constant sample 106 size and variable sample size. Choice	
		between variables and autibutes control charts. Guidelines for	
		Implementing control charts.	
	Drogogg	Fail D Decise definition standardized formula relation to product tolerance and	
Unit 6	r rocess conshility	six sigma concept of process capability. Seven OC tools	5
	Sompling	Concept of accepting compling, according of inspection. Acceptance plans	
	Inspection	-single double and multiple sampling. Operating characteristic curves -	
Unit 7	inspection	construction and use. Determinations of average outgoing quality average	1
Unit /		outgoing quality level average total inspection producer risk and	-
		consumer risk published sampling plans Gauge R and R and MSA	
	Statistical	Application of statistical theory of tolerances to design of tolerances in	
Unit 8	Theory of	random assemblies and application in other areas	5
Unito	Tolerances	random assemblies and approactor in other areas.	5
	Reliability	Failure models of components definition of reliability MTRE Failure	
	and Life	rate common failure rate curve types of failure reliability evaluation in	
Unit 9	Testing	simple cases of exponential failures in series paralleled and series parallel	5
	- coung	device configurations. Redundancy and improvement factors evaluations	
		Baranons, recontance, and improvement factors evaluations.	

Text Books:

- Kenedy, E.V. & Andrews Donald, "Inspection and Gauging", Industrial Press Inc., 1977.
 Juran, J.M. & Gryan, F.M, "Quality Planning and Analysis", Tata McGraw Hill, 1995.

3. Grant, E.L. & Richards, S.L., "Statistical Quality Control", McGraw Hill, 1998.

Additional Books:

- 1. Mahajan. M, "Statistical Quality Control", Dhanpat Rai & Co., 2008.
- 2. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.

SUBJECT NAME: Green Manufacturing		
Programme: B.Tech. ME(P)	L: 4 T: 0 P: 0	
Semester: 7	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Elective III	

SUBJECT CODE: PEMP-135

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

on comp	In completion of the course, the student will have the ability to.		
CO#.	Course Outcomes (Cos)		
1	Interpret the role of biomedical engineering in society		
2	Demonstrate the principles of various diagnostic devices.		
3	Identify the various techniques used in diagnosis though imaging.		
4	Describe the working principles of various therapeutic and assist devices.		
5	Understand device specific safety goals and standards.		
6	Illustrate the concepts of ethical theories and moral principles for the health professions.		

S. No.	Title	Content details(Part A)	Credit
			Hrs.
Unit 1	Introduction to	Why Green Manufacturing, Motivations and Barriers to Green	4
	Green	Manufacturing, Environmental Impact of Manufacturing, Strategies	
	Manufacturing	for Green Manufacturing. The Social, Business, and Policy	
		Environment for Green Manufacturing Introduction, The Social	
		Environment—Present Atmosphere and Challenges for Green	
		Manufacturing, The Business Environment: Present Atmosphere and	
		Challenges, The Policy Environment—Present Atmosphere and	
		Challenges for Green Manufacturing. Principles of Green	
		Manufacturing Introduction, Background, and Technology Wedges,	
		Principles, Mapping Five Principles to Other Methods and Solutions.	
Unit 2	Green	Motivation force – Rediscovery of Ancient values – The global	5
c	Movement	sustainability Agenda – The response of industry. External drivers:	•
		The voice of society – Green Expectation – Confronting climate	
		change – Government initiatives: Stick and Carrot – Environmental	
		Management System Standards – Sustainable Rating Schemes –	
		Voluntary codes and principles – Business value drives	
Unit 3	Matrics for	Introduction Overview of Currently Used Metrics Overview of	5
Omt 5	Croop	I CA Methodologies Metrics Development Methodologies Outlook	3
	Monufacturing	and Desearch Needs	
TT •4 4		Life Could of Day logical Sectors Description of Day 1 Day 61	
Unit 4	Ciosea-Loop	Life Cycle of Production Systems, Economic and Ecological Benefits	0
	Production	of Closed Loop Systems, Machine Tools and Energy Consumption,	
	Systems	LCA of Machine Tools, Process Parameter Optimization, Dry	
		Machining and Minimum Quantity Lubrication, Remanufacturing,	1

		Reuse, Approaches for Sustainable Factory DGreen Manufacturing in	
		the Semiconductor Industry: Concepts and Challenges	
		Part B	
Unit 5	Environmental	Introduction, Nano-manufacturing Technologies, Conventional	5
	Implications of	Environmental Impactof Nano-manufacturing, Unconventional	
	Nano-	Environmental Impactsof Nano-manufacturing, Life Cycle	
	manufacturing	Assessment (LCA) of Nanotechnologies.	
Unit 6	Green Energy	Introduction, Clean Energy Technologies, Application Potential of	5
	Resources	Clean Energy Supplying Green Manufacturing. Energy needs of india, classification of energy sources, importance of renewable energy resources. Basic concepts of solar energy, wind energy bio energy geothermal energy, ocean thermal energy, wave energy, tidal energy, waste to energy, heat to energy, fuel cells: types and applications and other renewable energy resources	
Unit 7	Green Design	Design the rules and processes to meet the market need and the green manufacturing requirements by selecting and evaluating suitable technical, managerial / project management and supply chain management scheme.	6
Unit 8	Green Electronics	Environmental concerns of the modern society – overview of electronics industry and their relevant regulations in different countries of World Restriction of hazardous substances (ROHS) – waste electrical and electronic equipment (WEEE) – energy using product (EUP) and registration evaluation, authorization and restriction of chemical substances (REACH). Green electronics materials and products, green electronics assembly and recycling	6
Unit 9	Green Supply Chain	Green supply Chains – Need for Green Supply Chains – Implications of modern supply chain management – The supply chain strategy – Ingredients of green supply chain strategy. Evaluating the impact of GSCM activities on sustainability – Economic, Environmental and social impacts of GSCM Stages of GSCM - performance measurement.	6

- 1. Dornfeld, David Green Manufacturing Fundamentals and Applications Springer 2013
- 2. N. Senthil Prabhu Green Manufacturing Through Lean Tools Notion Press
- 3. Ame Green Manufacturing Taylor & Francis Inc
- 4. Hillis David R. and J. Berry DuVALL Improving Profitability Through Green Manufacturing John Wiley & Sons Inc
- 5. Joseph Sakis Greener Manufacturing and Operations: From Design to Delivery and Back Taylor & Francis Ltd 2001

SUBJECT CODE: PEMP-136

SUBJECT NAME: Investment Planning			
Programme: B.Tech. ME(P)	L: 4 T: 0 P: 0		
Semester: 7	Teaching Hours: 48		
Theory/Practical: Theory	Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Elective III		

SURIFCT NAME: Investment Pla

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)	
1	Identify legal issues that impact financial and other risks affecting business.	
2	Analyze relevant case law for the purpose of finding legal precedents that will be used to persuade a	
	judge or jury.	
3	Interpret statutory law for purposes of risk avoidance, and to establish control mechanisms	
4	Understand different investment alternatives in the market	
5	Understand how securities are traded in the market	
6	Be able to analyze and price different securities	

Detailed Contents:

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Evolution of finance objective of the firm, Time value of money present	4
		values, Internal rate of return or yield bond returns, The return from a stock	
		investment, Dividend discount models.	
Unit 2	Financial	: The process financial planning, Client interactions, Time value of money	8
	Planning	applications, Personal financial statements, Cash flow and debt	
		management, planning to finance education	
Unit 3	Risk Analysis	Risk management and insurance decision in personal financial planning,	6
	& Insurance	Various Insurance Policies and Strategies for General Insurance, Life	
	Planning	Insurance, Motor Insurance, Medical Insurance	
Unit 4	Investment	Risk Return Analysis, Mutual Fund, Derivatives, Asset Allocation,	8
	Planning	Investment strategies and Portfolio construction and management.	
		Part B	
Unit 5	Investment	Introduction to investment analysis, discounted cash flow criteria for	6
	Analysis	economic evaluation-ROL_ payback, MAP equipment selection, risk	
		analysis, break-even point, capacity planning. Portfolio selection and	
		technological forecasting.	
Unit 6	Project	Search for a business idea, project identification project planning, project	8
	Identification	appraisal, project evaluation under risk, under uncertainly, analysis of non-	
	& Evaluation	financial aspects.	
Unit 7	Retirement	Retirement need analysis techniques, Development of retirement plan,	8
	Planning &	Various retirement schemes such as Employees Provident Fund (EPF),	
	Employees	Public Provident Fund (PPF), Superannuation Fund, Gratuity, Other	
	Benefits:	Pension Plan and Post- retirement counseling.	

Text Books:

- 1) Singhanar V.K: Students' Guide to Income Fax; Taxmann, Delhi.
- 2) Prasaci, Bhagwati: Income Tax Law & Practice: Wiley Publication, New Delhi.
- 3) Girish Ahuja and Ravi Gupta: Systematic approach to income tax: Sahitya Bhawan Publications, New Delhi.
- 4) Ranganathan and Madhumathi: Investment Analysis and Portfolio Management: Pearson, New Delhi.
- 5) George Rejda: Principles of Risk Management and Insurance: Pearson, New Delhi.

Reference Books:

- 1. J.M.Pandey, "Financial Management", Vikas Publishing.
- 2. James Van Home, "Financial Management & Policy", Prentice Hall International.
- 3. Harold Kerzner, "Project Management", John wilay and sons.
- 4. Prasanna Chandra, "Financial Management", Tata McGraw Hill.
 - 5. Geoffrey Hirt, Stanley Block, Somnath Basu", Investment Planning".

SUBJECT CODE: PEMP-139 SUBJECT NAME: VALUE ENGINEERING

Programme: B.Tech. ME(P)		L: 4 T: 0 P: 0	
Semeste	r: 7	Teaching Hours: 48	
Theory/	Practical: Theory	Credits: 4	
Internal Marks: 40		Percentage of Numerical/Design/Programming Problems: 10%	
External Marks: 60		Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100		Status: Elective IV	
Additional Material Allowed in		n ESE: Scientific Calculator	
On completion of the course, the student will have the ability to:			
CO#.	Course Outcomes (C	Cos)	
1	Explain the concepts	of value engineering, identify the advantages, applications.	
2	Apply various phase	es of value engineering. Analyze the function, approach of function and	
	evaluation of function	1.	
3	Determine the worth	and value.	

3	Determine the worth and value.
4	Explain the concept of queuing theory
5	Develop analytical skills for appraise the value engineering operation in maintenance and repair activities
6	Create the value engineering team and discuss the value engineering case studies.

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Value engineering concepts, advantages, applications, problem	7
		recognition, and role in productivity, criteria for comparison, element of	
		choice.	
		Organization: Level of value engineering in the organization, size and skill of VE	
		staff, small plant, VE activity, unique and quantitative evaluation of ideas	
Unit 2	Value	Introduction, orientation, information phase, speculation phase, analysis	8
	Engineering	phase. Selection and Evaluation of value engineering Projects, Project	
	Job Plan	selection, methods selection, value standards, application of value engineering methodology.	
Unit 3	Analysis	Anatomy of the function, use esteem and exchange values, basic vs.	8
	function	secondary vs. unnecessary functions. Approach of function, Evaluation of	
		function, determining function, classifying function, evaluation of costs,	
		evaluation of worth, determining worth, evaluation of value	
		Part B	
Unit 4	Value	Selecting products and operation for value engineering action, value	10
	Engineering	engineering programmes, determining and evaluating function(s)	
	Techniques	assigning rupee equivalents, developing alternate means to required	
		functions, decision making for optimum alternative, use of decision	
		matrix, queuing theory and Monte Carlo method make or buy, measuring	
		profits, reporting results, Follow up, Use of advanced technique like	
		Function Analysis System.	
Unit 5	Versatility of	Value engineering operation in maintenance and repair activities, value	7
	Value	engineering in non-hardware projects. Initiating a value engineering	
	Engineering	programme Introduction, training plan, career development for value engineering specialties.	
		Fast diagramming: cost models, life cycle costs	

Unit 6	Value	Value engineering team, co-coordinator, designer, different services,	8
	Engineering	definitions, construction management contracts, value engineering case	
	Level of	studies.	
	Effort		

- 1. Alphonse Dell'Isola, "Value Engineering: Practical Applications for Design, Construction, Maintenance & Operations", R S Means Co., 1997.
- 2. Richard Park, "Value Engineering: A Plan for Invention", St. Lucie Press, 1999.
- 3. Del L. Younker, "Value Engineering analysis and methodology", Marcel Dekker Inc, New York, 2004.
- 4. Miles, L.D., "Techniques of Value Analysis and Engineering", McGraw Hill second Edition, 1989.

Additional Books:

- 1. Anil Kumar Mukhopadhyaya, "Value Engineering Mastermind: From concept to Value Engineering Certification", SAGE Publications, 2003.
- 2. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.

SUBJECT CODE: PEMP-140 SUBJECT NAME: Intellectual Property Right

Programme: B.Tech. ME(P)		L: 4 T: 0 P: 0	
Semeste	r: 7	Teaching Hours: 48	
Theory/	Practical: Theory	Credits: 4	
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%	
Externa	l Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 100	Status: Elective IV	
Additiona	al Material Allowed ir	n ESE: Scientific Calculator	
On comp	letion of the course, th	he student will have the ability to:	
CO#.	Course Outcomes (C	Cos)	
1	Identify different type	es of Intellectual Properties (IPs), the right of ownership, scope of prote	ection as
	well as the ways to cr	reate and to extract value from IP.	
2	Recognize the crucial	l role of IP in organizations of different industrial sectors for the purpos	ses of
	product and technolo	gy development.	
3	Identify activities and	d constitute IP infringements and the remedies available to the IP owner	r and
	describe the precaution	ous steps to be taken to prevent infringement of proprietary rights in pro	oducts
	and technology devel	lopment.	
4	Be familiar with the p	processes of Intellectual Property Management (IPM) and various appro	oaches
	for IPM and conducti	ing IP and IPM auditing and explain how IP can be managed as a strate	gic
	resource and suggest	IPM strategy.	
5	Be able to anticipate	and subject to critical analysis arguments relating to the development a	nd
	reform of intellectual	property right institutions and their likely impact on creativity and inner	ovation.
6	Be able to demonstra	te a capacity to identify, apply and assess ownership rights and marketi	ng
protection under inte		llectual property law as applicable to information, ideas, new products a	and
	product marketing.		
Detailed	Contents:		1
		Content details	Cradit

S.No.	Title	(Part A)	Credit Hrs.
Unit 1	Introduction To	Introduction, Types Of Intellectual Property, International Organizations, Agencies And Treaties, Importance Of Intellectual Property Rights, International treaties & conventions, Acts on intellectual property rights,	8

	Intellectual Property	Domain name disputes and resolution, Cyber Crime offences and contraventions.	
Unit 2	Trade Marks	Introduction to trademarks, Registration of trademarks, Infringement of trademarks, Passing off. Purpose And Function Of Trade Marks, Acquisition Of Trade Mark Rights, Protectable Matter, Selecting And Evaluating Trade Mark, Trade Mark Registration Processes. Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks).	8
Unit 3	Copyrights and Law Of Copy Rights	: Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties - Related Rights - Distinction between related rights and copyrights Fundamental Of Copy Right Law, Originality Of Material, Rights Of Reproduction, Rights To Perform The Work Publicly, Copy Right Ownership Issues, Copy Right Registration, Notice Of Copy Right, International Copy Right Law.	8
		Part B	
Unit 4	Patents	Elements of Patentability Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board	8
Unit 5	Other forms of IP (Design & Geographical Indication	Design: meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection Geographical indication: meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection	8
Unit 6	New Development s Of Intellectual Property:	New Developments In Trade Mark Law; Copy Right Law, Patent Law, Intellectual Property Audits. International Overview On Intellectual Property, International – Trade Mark Law, Copy Right Law, International Patent Law, International Development In Trade Secrets Law. India`s New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies	8

- 1. Intellectual Property Rights, Deborah. E. Bouchoux, Cengage Learning.
- Intellectual Property Rights- Unleashmy The Knowledge Economy, Prabuddha Ganguli, Tata Mc Graw Hill Publishing Company Ltd., B.S Raghuwanshi "Workshop Technology" Vol.1 & Vol.2 Dhanpat Rai& Co.
- 3. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.
- 4. W. Cornish, D. Llewelyn and T. Aplin, "Intellectual Property: Patents, Copyright, Trademarks and Allied Rights", Sweet and Maxwell, 2007.
- 5. R. Jacob and D. Alexander, "A Guide Book to Intellectual Property Patent trademarks, Copyrights and Designs", Sweet and Maxwell 4th edition, 1993.

Reference Books:

- 1. Subramanian, N., & Sundararaman, M. (2018). Intellectual Property Rights An Overview. Retrieved from http://www.bdu.ac.in/cells/ipr/docs/ipr-eng-ebook.pdf.
- 2. World Intellectual Property Organisation. (2004). WIPO Intellectual property Handbook. Retrieved from <u>https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf</u>.

- Fundamentals of IP for Engineers: K.Bansl & P.Bansal
 Intellectual property right, Deborah, E. BoDcboux, Cengage leaning.
 Intellectual property right Unleasbing the knowledge economy, Prabuddha Ganguli, Tata McGraw Hill Publishing Company Ltd.

Elective Subjects Materials Group 7th Semester

SUBJECT CODE: PEMP- 157 SUBJECT NAME: Nano Materials

Programme: B. Tech. M	E(P) L: 4 T: 0 P: 0		
Semester: 7	Teaching Hours: 48		
Theory/Practical: Theor	y Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Elective III		
Additional Material Allov	Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:			
CO#. Course Outcon	nes (Cos)		
1 Explain the effe	ects of quantum confinement on the electronic structure and corresponding physical		

1	Explain the effects of quantum commement on the electronic structure and corresponding physical
	and chemical properties of materials at nanoscale.
2	Choose appropriate synthesis technique to synthesize quantum nanostructures of desired size, shape
	and surface properties.
3	Correlate properties of nanostructures with their size, shape and surface characteristics.
4	Appreciate enhanced sensitivity of nanomaterial based sensors and their novel applications in
	industry.
5	Demonstrate an understanding of approaches to nanomaterials characterization.
6	Understanding of the properties of materials with strong dependence on size.

Detailed Contents:

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
	Introduction	Definitions and course organization, Historical development of	8
Unit 1	to Nano	nanomaterials, Classification of nanomaterials, Features of nanosystems,	
0	Materials	Characteristic length scales of materials and their properties, Density of	
		states in 1-D, 2-D and 3-D bands,	
	Properties of	Size and shape dependence of optical, electronic, photonic, mechanical,	8
Unit 2	Nano	magnetic and catalytic properties. Properties and Size dependence of	
Unit 2	Materials	properties Chemical, vibrational, thermal, electrical Theoretical Aspects-	
		e.g. density functional theory.	
	Quantum	Electron confinement in infinitely deep square well, Confinement in one	8
Unit 3	Size Effect	dimensional well, Idea of quantum well structure, Formation of quantum	
		well, Quantum dots and quantum wires.	
		Part B	
	Synthesis	Top-down and bottom-up approach, cluster beam evaporation, ion beam	8
Unit 4	Methods	deposition, chemical bath deposition with capping techniques, mechanical	
		milling, chemical methods and self-assembly.	
	Nano	: Scanning and Transmission Electron Microscopy Scanning Probe	8
	Material	Microscopies: (Atomic Force, scanning tunneling microscopy),	
Unit 5	characteriza	Diffraction and scattering techniques, Vibrational spectroscopy and	
	tion	Surface techniques.	
	techniques	*	
	Nano	Nanoparticles, Nanocoatings and Nanocomposites, Nanotubes,	8
	Materials	Fullerenes, Thin film chemical sensors, gas sensors, biosensors, Carbon	
Unit 6	and their	fullerenes and Carbon nanotubes, Thin film chemical sensors, biosensors,	
	applications	Solar cells, Drug deliveries and optoelectronic devices, Nanoscale	
	**	chemical- and bio-sensing Biological/bio-medical applications.	

Text Books:

1. The Physics and Chemistry of NanoSolids by Frank J. Owens and Charles P. Poole Jr, Wiley-

Interscience, 2008.

- 2. Bimerg, D., Grundmann, M., and Ledentsov, N.N., Quantum Dot Heterostructures, John Wiley (1999). 3. Poole, C.P., Owens, F.J., Introduction to NanotechnologyJohn Wiley & Sons (2003)
- 3. Jain, K.P., Physics of Semiconductor Nanostructures, Narosa (1997).
- 4. Fendler, J.H., Nano particles and Nano-structured Films, John Wiley & Sons (1998).

Reference Books:

- 1. Nanomaterials- Synthesis, Properties and Applications, Edited by A.S. Edelstein and R.C. Cammarata, Institute of Physics Publishing, London, 1998 (paper back edition).
- 2. Timp, G., Nanotechnology, Springer-Verlag (1999).
- 3. Nanochemistry: A Chemical Approach to Nanomaterials, by G. Ozin and A. Arsenault, RSC Publishing, 2005.
- 4. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, Edward L. Wolf, Wiley-VCH, 2nd Reprint (2005).

DUDULU	a realized in multipliced in multiplices		
Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0		
Semester: 7	Teaching Hours: 48		
Theory/Practical: Theory	Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Elective III		
Additional Material Allowed in ESE: Scientific Calculator			

SUBJECT CODE: PEMP-158

SUBJECT NAME: Explosive Materials used in Industries

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand different hazards associated with Explosive Materials
2	Understand different properties of Explosive Materials
3	Understand different preventive techniques of Explosive Materials
4	Understand safety Management of Handling the Explosive Materials
5	Understand Explosion Protection Management System
6	Understand uses of Explosive Materials for the betterment of mankind

S No	Title	Content details	Credit
5.110		(Part A)	Hrs.
Unit 1	Introduction	Explosion hazards, Definition of explosives, constituents of explosive,	
	To Explosion	properties of explosive. Low and high explosives, permitted & non-	6
		permitted explosives, fuses, detonators, recent advances in explosives.	
Unit 2	Flammability	Lean limit and Rich limit, LEL & UEL measurement techniques and	
	Limits And	equipment, Minimum ignition energy, Relation between auto-ignition	7
	Theories:	temperature and flash point, Effect of temperature and pressure on flash	
		point, Classification of flammable materials, Vapour tank Explosion, a.	
		TWA flight800 Disaster.	
Unit 3	Explosion	Explosion prevention techniques-a. Ventilation. Separation. Physical	
	Prevention	barriers. Alternative techniques, Preventing the formation of explosive	7
	And	atmosphere, Explosion protection systems - Protection techniques -	
	Protection	Containment, Isolation, Suppression, Venting, Ventilation for	
		explosion protection system, Explosion protection using inert gases,	
		Flame arrestors and quenching distance	

Unit 4	Safety	Concept Of Safety, Industrial Accidents, Reasons For Accident	
	Management	Prevention, Function Of Safety Management, Safety Organizations,	7
	0	Objectives Of Safety Organizations, Role Of Industrial Organization	
		(Safety), Essential Requirements Of Safety Programs, Plant Safety	
		Rules And Procedures, Formulation Of Rules, Types Of Rules,	
		violation Of Rules, Reduction Of Hazards	
		Part B	
	Explosion	Principles of explosion-detonation and blast waves-explosion	7
	Protecting	parameters - Explosion Protection, Containment, Flame Arrestors,	
Unit 5	Systems	isolation, suppression, venting, explosion relief of large enclosure-	
Unit 5		explosion venting-inert gases, plant for generation of inert gas rupture	
		disc in process vessels and lines explosion, suppression system based	
		on carbon dioxide (CO2) and halons-hazards in LPG, ammonia (NH3).	
	Introduction	9 The nature of dust explosions, Significance of the dust explosion	
	To Dust	hazard: statistical records, Dust and dust cloud properties that influence	
Unit 6	Explosions	ignitability and explosion violence, Means for preventing and	7
		mitigating dust explosions, Selecting appropriate means for preventing	
		and mitigating dust explosions,	
	Classification	High Explosives, Dynamites, Gelatins, Semi-gelatins, Water gels &	
	Of Common	slurries and Emulsions, Blasting Agents, Water gels & slurries and	7
Unit 7	Industrial	Emulsions, ANFO, Blends, Low Explosives, Black powder	
	Explosives		

- 1. McElroy, Frank E "Accident Prevention manual for industrial operations" N.S.C., Chicago, 1988.
- 2. Dinko Tuhtar, "Fire and explosion protection A System Approach" Ellis Horwood Ltd, Publisher, 1989.
- 3. Frank P. Lees Butterworth-Hein, "Loss Prevention in Process Industries" (Vol.I, II and III), Elsevier

SUBJECT CODE: PEMP-160 SUBJECT NAME: Thermodynamics of Materials

	e -
Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective III

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

Course Outcomes (Cos)
Understand the concept thermodynamics and its applications.
Apply laws of thermodynamics in mechanical components like pump, condenser etc
Solve various design as well as technical problems using various thermodynamic rekations.
Solve various problems encountered like leakage, cracks, blowholes etc with the manufacturing
process by analyzing the data.
Select different materials according to their thermodynamic behavior.
Calculate reaction rates and analyse reaction mechanisms in various thermodynamic processes.

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction to thermodynam ics	Energy; Macroscopic and microscopic forms of energy; location of energy; flow of energy. Application and utility; important terms used in thermodynamics; thermodynamic properties; state postulate; concept of temperature and absolute temperature.	6
Unit 2	Thermodyna mic Variables	State Variables and Functions, Thermodynamic Systems and Processes, First Law of Thermodynamics, application of first law to equipments such as boiler, turbine, compressor, nozzle, expander, pump and condenser. Second Law of Thermodynamics,	8
Unit 3	Properties of Materials	Stored Energy in Solids, Quasi-static Processes, Heat Capacities, Internal Energy and Enthalpy, Entropy Content in Materials,	10
		Part B	
Unit 4	Introduction to solutions	partial molar entities – Gibbs Duhem relations - thermodynamic aspects of metallic solutions and salt melts – Raoult's Law and Henry's Law - regular and quasi chemical models	8
Unit 5	Thermodyna mic aspects of phase diagrams	similarity in thermodynamic approach towards different classes of materials – thermodynamic aspects of defect formation in metals and ceramics – approaches used in chemical modeling	6
Unit 6	Principles of metallurgical kinetics	reaction rates and reaction mechanisms – overview of mass transfer, heat transfer and fluid flow – related applications in metallurgical processes – role of transport phenomena in mathematical and physical modelling.	10

- 4. Upadhayaya, G.S., and Dube, R.K., Problems in metallurgical thermodynamics and kinetics, Pergamon.
- 5. P. K. Nag; Engineering Thermodynamics; Tata McGraw-Hill, New Delhi.
- 6. Gaskell, David R., 'Introduction to Metallurgical Thermodynamics', McGraw Hill, 1973

Additional Books:

- 3. Mohanty, A. K., "Rate Processes in Metallurgy", Prentice Hall of India (EEE), 2000
- 4. Y. A. Cengel& M. A. Boles; Thermodynamics-An Engineering Approach; McGrawHill Inc.
- 5. J. P. Holman; Thermodynamics; McGraw-Hill Book Co. New Delhi.

SUBJECT CODE: PEMP-162

SUBJECT NAME: NUCLEAR MATERIALS

Programme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semester: 7	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective IV

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Identify various structures, reactions in nuclear materials.
2	Classify and identify various nuclear reactions and energies released during these reactions.
3	Utilize proper coolants, fuels, moderators in nuclear components.
4	Analyses the effect of radiations and enlist various safety and shielding methods.

5	Analyze various materials used for the production of nuclear energy.

6 Use Nano materials for nuclear applications.

Detailed Contents:

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Nuclear Structure	Structure of nucleus, binding energy, fission reaction, neutron cross sections, moderation of neutrons, multiplication factor.	6
Unit 2	Nuclear Fusion Reaction	Classification of nuclear reactions, Energy released in nuclear reactions Fusion reactions for controlled power generation, Methods of achieving fusion energy; Magnetic confinement, Inertial confinement fusion (ICF), Muon-catalyzed fusion, Cold fusion and bubble fusion, Conditions for practical fusion yield.	10
Unit 3	Reactors and Materials	Classification of nuclear reactors, Materials for nuclear reactors, Fuels, Moderators, Control rods, Coolant, Reflectors and Structural materials. Fabrication of fuel and cladding materials.	8
		Part B	
Unit 4	Radiation Effects	Effect of radiation on reactor materials, Radiation hazards, safety and shielding, disposal of radioactive wastes	8
Unit 5	Production of Nuclear Materials	Atomic minerals, their occurrence in India, General methods of their processing. Production metallurgy of nuclear grade uranium, Thorium beryllium and zirconium, Production of enriched uranium.	10
Unit 6	Processing of spent fuel	Indian reactors and atomic energy programme in India. Use of Nano materials for nuclear application.	6

Text Books:

- 1. R .Stephenson, Introduction to Nuclear Engineering, McGraw-Hill.
- 2. H.S. Ray, R. Sridhar and K.P. Abraham: Extraction of Nonferrous Metals Affiliated East-West Press Private Limited.

Additional Books:

1. S. Glasstone and A.Sesonke: Nuclear Reactor Engineering, Van Nostrand.

SUBJECT CODE: PEMP-163 SUBJECT NAME: Textures in Materials

Program	nme: B. Tech. ME(P)	L: 4 T: 0 P: 0
Semeste	emester: 7 Teaching Hours: 48	
Theory/	Practical: Theory	Credits: 4
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
Externa	l Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total M	otal Marks: 100 Status: Elective IV	
Additiona	al Material Allowed in	n ESE: Scientific Calculator
On comp	letion of the course, th	ne student will have the ability to:
CO#.	Course Outcomes (Co	os)
1	Understand the differ	ent Textures of Materials
2	Understand the Micro	and Macro Meso Textures
3	Understand the methods of controlling the Textures of Materials	
4	Understand the Mode	lling of Deformation Textures of Materials
5	Understand the metho	od of developing different Textures of Materials
6	Understand the conce	pt of formability

Detailed Contents:

S.No	Title	Content details	Credit
5.110		(Part A)	Hrs.
Unit 1	Origin and	Origin and development of textures during materials processing stages:	6
	development	solidification, deformation, annealing, phase transformation. Deformation	
	of textures	microstructure and texture in FCC, BCC and HCP metals and alloys	
Unit 2	Representati	Representation of macro, micro and meso-texture. Measurement and	6
	on of macro,	analysis of macro, micro and meso-texture Materials processing-texture	
	micro	correlations in different classes of materials (metals and ceramics).	
	and meso-		
	texture.		
Unit 3	Texture	Texture-properties correlations with case studies on Structural materials	6
	control.	(eg: steels, Al alloys, Mg alloys, Ti alloys) Functional materials (for eg:	
		superconducting (YBCO) thin films	
		Role of grain boundary character on interface controlled properties	
		(segregation, creep, fracture, sensitization). Concept of grain boundary	
		engineering	
Unit 4	Concepts of	Concepts of texture in materials, their representation by pole figure and	6
	texture in	orientation distribution functions. Texture measurement by different	
	materials,	techniques: X-ray diffraction, neutron diffraction, synchrotron X-rays,	
		ultrasonic waves	
		Part B	
Unit 5	Modelling of	Modelling of deformation texture, Sachs, Taylor and Self consistent	6
	deformation	models for polycrystal deformation and texture evolution. Annealing	
	texture	phenomenon: Recovery, recrystallization and grain growth, texture	
		evolution during annealing. Solidification and transformation texture.	
Unit 6	Texture	Texture development during coatings and thin film deposition.	6
	development		
Unit 7	Influence of	Influence of texture on mechanical, chemical and physical properties:	6
	texture on	Yield strength, ductility, fatigue, corrosion, stress corrosion cracking,	
	material	magnetic and dielectric properties	
	properties		
Unit 8	Texture and	Texture and formability Texture control in aluminum industry, automotive	6
	formability	grade and electrical steels, magnetic and electronic materials	

Taxt Books

1. An Introduction to Textures in Metals, Monograph no. 5, The Institute of Metals, London (1979). M. Hatherly and W.B. Hutchinson

2. Crystallographic texture of materials, Satyam Suwas and R.K. Ray, Springer, (2014)

3. Introduction to Texture Analysis, V. Randle and O. Engler, CRC Press, 2nd edition (2010).

4. Recrystallisation and Related Phenomena, F.J. Humphreys and M. Hatherly, Elsevier, 2nd edition (2004).

Elective Subjects Design & Manufacturing Engineering Group 8th Semester

SUBJECT CODE: PEMP-117 SUBJECT NAME: DESIGN OF EXPERIMENTS

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective V

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

Course Outcomes (Cos)
Describe the role of design of experiments in a research.
Understand basic concepts of statistical calculations.
Design the experimental blueprint using various techniques
Apply the technique of Taguchi's Orthogonal Arrays
Determine signal to noise ratio during experimentation
Calculate the tolerance and errors during experiments

S No	Title	Content details	Credit
5.110.	Title	(Part A)	Hrs.
Unit 1	Introduction	Strategy of Experimentation, Typical applications of Experimental design,	6
Unit I		Basic Principles, Guidelines for Designing Experiments.	U
	Basic	Concepts of random variable, probability, density function cumulative	
	Statistical	distribution function. Sample and population, Measure of Central tendency;	
Ilmit 2	Concepts	Mean median and mode, Measures of Variability, Concept of confidence	7
Unit 2		level. Statistical Distributions: Normal, Log Normal & Weibull	/
		distributions. Hypothesis testing, Probability plots, choice of sample size.	
		Illustration through Numerical examples.	
	Experimental	Classical Experiments: Factorial Experiments: Terminology: factors,	
	Design	levels, interactions, treatment combination, randomization, Two-level	
Unit 3		experimental designs for two factors and three factors. Three-level	6
Unit 5		experimental designs for two factors and three factors, Factor effects,	U
		Factor interactions, Fractional factorial design, Saturated Designs, Central	
		composite designs. Illustration through Numerical examples.	
	Analysis And	Measures of variability, Ranking method, Column effect method & Plotting	
Linit 4	Interpretation	method, Analysis of variance (ANOVA) in Factorial Experiments: YATE's	4
Unit 4	Methods	algorithm for ANOVA, Regression analysis, Mathematical models from	-
		experimental data. Illustration through Numerical examples.	
		Part B	
		Quality, Western and Taguchi's quality philosophy, elements of cost, Noise	
	Quality By	factors causes of variation. Quadratic loss function & variations of	
Unit 5	Experimental	quadratic loss function. Robust Design: Steps in Robust Design: Parameter	7
	Design	design and Tolerance Design. Reliability Improvement through	
		experiments, Illustration through Numerical examples.	
	Experiment	Types of Orthogonal Arrays selection of standard orthogonal arrays	
Unit 6	Design Using	Linear graphs and Interaction assignment Dummy level Technique	
	Taguchi's	Compound factor method Modification of linear graphs Illustration	6
	Orthogonal	through Numerical examples	
	Arrays	unough runnenear examples.	

Unit 7	Signal To Noise Ratio	Evaluation of sensitivity to noise. Signal to Noise ratios for static problems: Smaller-the-better type, Nominal-the –better-type, Larger-the-better type. Signal to Noise ratios for Dynamic problems. Illustration through Numerical examples.	4
Unit 8	Parameter And Tolerance Design	Parameter and tolerance design concepts, Taguchi's inner and outer arrays, parameter design strategy, tolerance design strategy. Illustration through Numerical examples.	8

- 4. A.W. Birley, B. Howarth, "Mechanics of plastics processing properties", Hana Publisher edition, 1991.
- 5. J.E. Mark, R. West, H.P. Allocock, "Inorganic Polymers", Prentice Hall, 1992.
- 6. Fried ,"Poly. Science and Technology", Prentice Hall

Additional Books:

- 3. Charles Harper, "Handbook of Plastics Technologies", McGraw-Hill.
- 4. Plastic Engg. Data Book, Glanill.

SUBJECT CODE: PEMP-118 SUBJECT NAME: Bio mechanics

SUBJECT MANIE. DIO INCENTINGS				
Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0			
Semester: 8	Teaching Hours: 48			
Theory/Practical: Theory	Credits: 4			
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 30%			
External Marks: 60	Duration of End Semester Exam(ESE): 3hr			
Total Marks: 100	Status: Elective V			

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand anatomical movements pertaining to mechanics
2	Understand details of bone structure, biomechanical characteristics of boneand joints
3	Understand the responsibilities of muscles for movement
4	Apply principles of force – velocity relationship in skeletal muscle forstrengthening and injury prevention
5	Understand details of Hard and soft tissues and their mechanical properties
6	Understand details the biomechanical characteristics of cardiovascular and Respiratory Mechanics

S. No.	Title	Content details(Part A)	Credit
			Hrs.
Unit 1	Introduction to	Review of the principles of mechanics, Vector mechanics- Resultant	4
	Biomechanics	forces of Coplaner & Noncoplaner and Concurrent & non-concurrent	
		forces, parallel force in space, Equilibrium of coplanar forces, Newton's	
		laws of motion, Work and energy, Moment of inertia.	
Unit 2	Tissue	Hard Tissues: Bone structure & composition mechanical properties of	6
	Biomechanics	bone, cortical and cancellous bones, viscoelastic properties, Maxwell &	
		Voight models - anisotropy. Electrical properties of bone, type of	
		fractures, biomechanics of fracture healing. Soft Tissues: Structure and	
		functions of Soft Tissues: Cartilage, Tendon, Ligament, and Muscle;	
		Material Properties: Cartilage, Tendon, Ligament, and Muscle; Modeling:	

		Cartilage, Tendon, Ligament, and Muscle.	
Unit 3	Joints Biomechanics	Skeletal joints, forces and stresses in human joints, Analysis of rigidbodies in equilibrium, free body diagrams, types of joint, biomechanical analysis of elbow, shoulder, hip, knee and ankle.	6
Unit 4	Cardiac & Respiratory Mechanics	Cardiovascular system, Mechanical properties of blood vessels: arteries, arterioles, capillaries, and veins. artificial heart valves, biological and mechanical valves development, testing of valves. Alveoli mechanics, Interaction of blood and lung, P-V curve of lung, Breathing mechanism, Airwayresistance, Physics of lung diseases.	6
		Part B	
Unit 5	Movement Biomechanics	Gait analysis, body & limbs: mass & motion characteristics actions, forces transmitted by joints. Jointsforces results in the normal & disable human body, normal & fast gait on the level. Patterns: Push/Throw Continuum Biomechanics of push - like motions, Biomechanics of throw - like motions.	6
Unit 6	Biofluid Mechanics	Newton's law, stress, strain, elasticity, Hooke's law, viscosity, Newtonian fluid, Non- Newtonian fluid, viscoelastic fluids, Vascular tree. Relationship between diameters, Velocity and pressure of blood flow, Resistance against flow.	6
Unit 7	Implant Mechanics	General concepts of Implants, classification of implants, Soft tissues replacements and Hard tissue replacements, basic consideration and limitation of tissue replacement, Design of orthopedic implant, specifications for a prosthetic joint, biocompatibility, requirement of a biomaterial, characteristics of different types of biomaterials, manufacturing process of implants, fixation of implants.	6
Unit 8	Mechanical Analysis of Human Motion:	Linear kinematics - Linear kinematic analysis - Position and displacement - Velocity and speed - Acceleration - Differentiation and integration - Kinematics of running - Kinematics of projectiles - Equations of constant acceleration. Angular kinematics - Angular motion - Measurements of angles - Types of angles - Representation of Angular motion vectors - Lower extremity joint angles - Relationship between angular and linear motion - Angular kinematics of running. Linear kinetics - Force - Laws of motion - Types of Forces - Representation of Forces acting on a system - Forces occurring along a curved path - Special force applications. Angular Kinetics - Torque - Centre of mass - Rotation and leverage - Moment of inertia - Angular momentum - Angular analogs to Newtons laws of motion - Special torque applications	8

- 1. Y C Fung, Biomechanics: Mechanical Properties of Living Tissues, springer, 2nd edition, 1993.
- 2. N. Ozkaya and M. Nordin, Fundamentals of Biomechanics-Equilibrium, Motion and Deformation, springer-verlag, 2nd edition 1999
- 3. Duane knudson, Fundamental of biomechanics, springer, 2nd edition 2007
- 4. D. J. Schneck and J. D. Bronzino, Biomechanics- Principles and Applications, CRC Press, 2nd Edition, 2000
- 5. Joseph D, Bronzino, "The Biomedical Engineering Handbook", CRC Press, 3rd edition, 2006.
- 6. Roger Bartlett, Introduction to Sports Biomechanics 1997, Roger Bartlett, Taylor & Francis Group
- 7. Mow, Van C.; Huiskes, Rik, Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd

Edition,2005, Lippincott Williams & Wilkins

8. Hiroshi Wada, Biomechanics at Micro and Nano scale Levels, volume 1, 2005, World Scientific Publishing Co. Pt. Ltd.

Additional Books

- 1. Paul Grimshaw et al. Sports & Exercise Biomechanics, Taylor & FrancisGroup, (2007).
- 2. Susan J. Hall, Basic Biomechanics, McGraw Hill Education, 2004.
- 3. Peter McGinnis Biomechanics of Sport and Exercise, Human Kinetics, 2005.
- 4. Kathryn Lutgens et al. Kinesiology (Scientific Basis of Human Motion), Brownand Bench mark, 1992.
- 5. Roger Bartlett, Introduction to Sports Biomechanics Analyzing Human Movement Patterns, Routledge, 2007.
- 6. Richard Shalak & ShuChien, Handbook of Bioengineering,

SUBJECT CODE: PEMP-119

SUBJECT NAME: Mechatronics

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective V

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

Course Outcomes (Cos)
Interpret the role of biomedical engineering in society
Demonstrate the principles of various diagnostic devices.
Identify the various techniques used in diagnosis though imaging.
Describe the working principles of various therapeutic and assist devices.
Understand device specific safety goals and standards.
Illustrate the concepts of ethical theories and moral principles for the health professions.

S. No.	Title	Content details(Part A)	Credit Hrs.
Unit 1	Introduction	Definition of Mechatronics, Mechatronics in manufacturing, Products, and design. Comparison between Traditional and Mechatronics approach	4
Unit 2	Fundamentals of electronics.	Data conversion devices, sensors, micro sensors, transducers, signal processing devices, relays, contactors and timers. Microprocessors controllers and PLCs.	6
Unit 3	Drives:	Stepper motors, servo drives. Ball screws, linear motion bearings, cams, systems controlled by camshafts, electronic cams, indexing mechanisms, tool magazines, transfer systems	6
Unit 4	Hydraulic systems	Flow, pressure and direction control valves, actuators, and supporting elements, hydraulic power packs, and pumps. Design of hydraulic circuits. Pneumatics: production, distribution and conditioning of compressed air, system components and graphic representations, design of systems.	7
Part B			
Unit 5	Description o PID controllers	fDescription of PID controllers. CNC machines and part programming. Industrial Robotics.	6

Unit 6	Electrical	Mathematical modeling of Electro Mechanical Systems, RLC Circuits,	6
	Systems	active and passive electrical circuits, PMDC Motor, Stepper motor, three	
		phase squirrel cage induction motor, three phase permanent magnet	
		synchronous motor, servo motor.	
Unit 7	Micro-	Introduction, Micro-Mechatronics elements, Microprocessor, Micro-	6
	Mechatronics	sensor, Micro actuator, Interface, Energy, Materials, Machining, Micro	
		physics, Applications of Micro Mechatronics.	
Unit 8	Application	of Robotics, manipulator, sensors, controller, Kinematics of Robot, Robot End	7
	Mechatronics:	effecters & Actuators mechanical grippers, Tools as end effecters.	
		Hydraulic devices, pneumatic devices, electric motors, other special	
		actuators., Sensors and Artificial Intelligence Mechatronic Elements of	
		Modern CNC Machines Other Mechatronic Applications Electronic	
		Thermostat, Automatic Camera, Air fuel ratio controller in Automobiles,	
		Digital Engine Control, Vehicle Motion Control, Mobile robots etc.	

1. HMT ltd. Mechatronics, Tata Mcgraw-Hill, New Delhi, 1988.

- 2. G.W. Kurtz, J.K. Schueller, P.W. Claar . II, Machine design for mobile and industrial applications, SAE, 1994.
- 3. T.O. Boucher, Computer automation in manufacturing an Introduction, Chappman and Hall, 1996.
- 4. R. Iserman, Mechatronic Systems: Fundamentals, Springer, 1st Edition, 2005
- 5. Musa Jouaneh, Fundamentals of Mechatronics, 1st Edition, Cengage Learning, 2012

SUBJECT CODE: PEMP- 120 SUBJECT NAME: Product Design and Development

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0		
Semester: 8	Teaching Hours: 48		
Theory/Practical: Theory	Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Elective V		
Additional Material Allowed in ESE: Scientific Calculator			
On completion of the course, the student will have the ability to:			
CO# Course Outcomes (Cos)			

CO#.	Course Outcomes (Cos)
1	Use basic principles/elements of visual design.
2	Understand the concept of color and form in the context of ergonomics.
3	Principles of graphic design balance, proximity, alignment, repetition and contrast.
4	Apply and conceptualize the knowledge in product graphics and detailing/fabrication.
5	Apply and conceptualize the knowledge in product graphics and detailing/fabrication.
6	Design and develop the product in effective and innovative ways.
D / U]	

S.No.	Title	Content details	Credit	
	The	(Part A)	Hrs.	
	Introduction	Importance of product design in industry. Principal requirements of good	8	
Unit 1	to Product	product design. Factors and considerations affecting product design.		
	Design	Product characteristics and economic analysis of product in terms of		
	_	standardization, simplification and specialization. Challenges faced by		
		industrial designers. Ergonomic factor in product design.		
Unit 2	Visual	Basic elements and concepts of visual design, Product Aesthetics Analysis,	8	
	Design	Basic Form Elements, and Integrating Basic form. Concepts of size, texture,		

		and color in Design. Basic principles of graphic design. Special	
		relationships and composition in two and three dimensions.	
	Aesthetic	Aesthetics and product design: Product Aesthetics Analysis, Elementary	8
	and Strength	forms their characteristics and significance in design. Form transition, Form	
Unit 3	Consideratio	in relation to ergonomics, material and manufacturing process, color as an	
	n in Design	element of design, color clarification dynamics, interrelation of colors,	
		colors and traditions; Psychological use of color form and material.	
		Part B	
	Product	Meaning and objectives of product graphics. Basic principles of graphic	8
	Graphics	design, Product graphics, product development and testing. Packaging	
Unit 4		materials their characteristics and applications. Packaging design	
		considerations, Visual communication aspects of product graphics,	
		Graphics of displays and control panels,	
	Value	Value engineering, concept, advantage and applications. Value, types of	8
Unit 5	Engineering	values. Analysis of function, using and evaluating functions. Value	
		engineering techniques. Value control.	
	Product	Definition and objective, Role of designer in product development.	8
	development	Manufacturing and economic aspects of product development, Product	
Unit 6	and	promotions, product developments, Standard fastening and joining details	
	Optimizatio	in different materials, Temporary and permanent joints, Detailing for plastic	
	n	products, Detailing for fabricated products in sheet metal.	

- 1. Mayall W.H., "Industrial Design for Engineers", LondonLiifee Books Ltd. 1967.
- 2. Dale Huchingson R, "New Horizons for Human Factors in Design", McGraw Hill Company 19811.Indistrial Design-Mayall.
- 3. Mccormick K.J. (Ed), "Human Factor Engineering", McGraw Hill Book Company Ltd. USA 1992.
- 4. Moustapha Concurrent Engineering in Product design & development, New Age international publisher.

Reference Books:

- 1. A.K.Chitale, R.C.Gupta, "Product Design and Manufacturing", Prentice-Hall of India, 6th Edition, 2013.
- 2. Karl T. Ulrich, Steven D. Eppinger, "Product Design and Development", McGraw-Hill, 6th Edition, 2013.
- 3. Kevin Otto & Kristin Wood Product Design: "Techniques in Reverse Engineering and new Product Development." 1 / e 2004, Pearson Education New.
- 4. N.L. Svensson, "Introduction to Engineering Design", Kensington, N.S.W.: New South Wales University Press, 3rd Revised Edition, 1981.
- 5. R. Matousek, "Engineering Design: A Systematic Approach" Published by Blackie and Son, 1969.

۵	ODJECT NAME. Surface Engineering
Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 30%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

SUBJECT CODE: PEMP-122 SUBJECT NAME: Surface Engineering

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand the concept of Surface Engineering
2	Apply the different techniques of Surface Engineering in industrial sector
3	Understand the utilize the Advancements of Surface Engineering in the industrial sector
4	Understand the concept of Coatings
5	Understand the concept of characterization of Coatings on different products
6	Imply the uses coating for better product life and product finish
Detailed (Tourtourtou

Detailed	Contents:

S.No	Title	Content details	Credit
5.110	THE	(Part A)	Hrs.
Unit 1	Fundamentals	Introduction: Engineering components, surface dependent properties and	6
	of surface	failures, importance and scope of surface engineering; Surface and surface	
	engineering:	energy: Structure and types of interfaces, surface energy and related	
		equations; Surface engineering: classification, definition, scope and	
		general principles	
Unit 2	Conventional	Surface engineering by material removal: Cleaning, pickling, etching,	9
	surface	grinding, polishing, buffing / puffing (techniques employed, its principle).	
	engineering	Role and estimate of surface roughness; Surface engineering by material	
		addition: From liquid bath - hot dipping (principle and its application with	
		examples); Surface engineering by material addition: Electrodeposition /	
		plating (theory and its scope of application);Surface modification of steel	
		and ferrous components: Pack carburizing (principle and scope of	
		application); Surface modification of ferrous and non ferrous components:	
		Aluminizing, calorizing, diffusional coatings (principle and scope of	
		application): Surface modification using liquid/molten bath: Cyaniding,	
		liquid carburizing (diffusion from liquid state) (principle and scope of	
		application): Surface modification using gaseous medium: Nitriding	
		carbonitriding (diffusion from gaseous state) (principle and scope of	
		application).	
Unit 3	Advanced	Surface engineering by energy beams: General classification scope and	9
emee	surface	principles types and intensity/energy deposition profile. Surface	-
	engineering	engineering by energy beams: Laser assisted microstructural modification	
	nractices	- surface melting hardening shocking and similar processes: Surface	
	practices	engineering by energy beams: I aser assisted compositional modification -	
		surface alloving of steel and non-ferrous metals and allovs. Surface	
		engineering by energy beams: I aser assisted compositional modification -	
		surface cladding composite surfacing and similar techniques: Surface	
		engineering by energy beams: Electron beam assisted modification and	
		ioining: Surface engineering by energy beams: Ion beam assisted	
		microstructure and compositional modification: Surface anginaaring by	
		spray techniques: Eleme spray (principle and scope of application): Surface	
		spray techniques. Frame spray (principle and scope of application), surface	
		engineering by spray techniques. Plasma coating (principle and scope of annihilation). Surface angineering by spray techniques.	
		(principle, and scope of application); Characterization of spray	
		(principle and scope of application); Characterization of surface	
		microstructure and properties (name of the techniques and brief operating	
		principie).	
		Part B	

Unit 4	Surface coatings and surface modifications:	Evaporation - Thermal / Electron beam; Sputter deposition of thin films & coatings - DC & RF; Sputter deposition of thin films & coatings - Magnetron & Ion Beam; Hybrid / Modified PVD coating processes Chemical vapor deposition and PECVD; Plasma and ion beam assisted surface modification; Surface modification by Ion implantation and Ion	8
		beam mixing	
Unit 5	Characterizati on of coatings and surfaces:	Measurement of coatings thickness; porosity & adhesion of surface coatings; Measurement of residual stress & stability; Surface microscopy & topography by scanning probe microscopy; Spectroscopic analysis of modified surfaces	9
Unit 6	Functional Coatings & Applications :	Functional and nano-structured coatings and their applications in photovoltaics, bio- and chemical sensors; Surface passivation of semiconductors & effect on electrical properties; Surface engineering of polymers and composites; Thin film technology for multilayers & superlattices for electronic, optical and magnetic devices; Modeling	7

- 1. K.G. Budinski, Surface Engineering for Wear Resistances, Prentice Hall, Englewood Cliffs, 1988.
- 2. M. Ohring, The Materials Science of Thin Films, Academic Press Inc, 2005.
- 3. Peter Martin, " Introduction to Surface Engineering and Functionally Engineered Materials", John Willey
- 4. Mircea K. Bologa, " Surface Engineering and Applied Electrochemistry", Springer.
- 5. Devis, J.R.," Surface Engineering for Corrosion & Wear Resistance", 2001 Maney Publicsing..

SUBJECT CODE: PEMP-123

SUBJECT NAME: COMPUTER INTEGRATED MANUFACTURING

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Describe and explain various types of manufacturing systems and applications of CIM.
2	Design various part programs in NC/DNC/CNC systems.
3	Generate process plans with the help of machinability data systems.
4	Apply the concept of group technology and coding system in manufacturing systems.
5	Use various inspection methods to improve quality with the help of computer aided system.
6	Design plant layout with the help of FMS.

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Overview of manufacturing processes, types of manufacturing systems, the product cycle, computer's role in manufacturing, sources and types of data used in manufacturing, Central Processing unit, memory input/output section, computer programming, minicomputer, microcomputer, P.C., Super Computers.	6

Unit 2	Computer Aided Design	Historical Perspective, Components of CAD systems, the design process, Application of Computer for Design, Manufacturing Data Base. General Information of various Software for CAD, Relation of CAD with CAM.	6
Unit 3	Numerical Control	The beginning of CAM: Historical Background, basic components of NC systems, NC Procedure, NC coordinate system and machine motions, applications and economics of NC, part programming- manual and computer assisted the APT Language.	6
Unit 4	Computer Controls in NC Systems	Problems with conventional NC computer numerical control, direct numerical control, combined CNC/ DNC systems, adaptive control machining system computer process interfacing, New development and latest trends.	4
Unit 5	Computer Aided Process Planning	Traditional process planning, retrieval process planning system, generative process planning, machinability data system, computer generated time standards.	4
		Part B	
Unit 6	Group Technology	Introduction, part families, part classification and coding, coding system and machining cells.	4
Unit 7	Computer Aided Production Management Systems	Traditional Production, Planning and Control, Introduction to computer aided PPC, Introduction to computer aided inventory BOS/PE/52 management, manufacturing resource planning (MRP- II), computer process monitoring and shop floor control, computer process control.	6
Unit 8	Computer Aided Quality Control	Traditional quality control, computer in quality control, contact inspection methods, Non-contact inspection methods, optical and non-optical computer aided testing.	4
Unit 9	Computer Aided Material Handling	Traditional Material handling, computer control on material handling, conveying, picking. Ware house control, computerized material handling for automated inspection and assembly.	4
Unit 10	Computer Integrated Manufacturi ng Systems	Introduction, types special manufacturing systems, flexible manufacturing systems (FMS), Machine tools and equipment, material handling systems, computer control systems.	4

- 1. Groover& Zimmer, "CAD/ CAM", Prentice Hall.
- 2. Groover, "Automation Production Systems and CIMS", Prentice Hall.
- 3. Beasanat & Lui, "CAD/ CAM", EWP

Additional Books:

- 1. Groover Mitchell, "Industrial Robotics", McGraw Hill.
- 2. Computer Integrated Manufacturing by A.W. Sche.

SUBJECT CODE: PEMP-124 SUBJECT NAME: Rapid Prototyping

	sebelei i iiiiili impia i iototyping
Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr

Total Marks: 100Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand and use techniques for processing of CAD models for rapid prototyping
2	Understand and apply fundamentals of rapid prototyping techniques.
3	Use appropriate tooling for rapid prototyping process.
4	Use rapid prototyping techniques for reverse engineering.
5	Use various software for rapid tooling
6	Identify factors influencing accuracy and errors in part building

Detailed Contents:

S No	Title	Content details	Credit
5.INO.	The	(Part A)	Hrs.
Unit 1	Introduction	Need for the compression in product development, history of RP systems, Survey of applications, Growth of RP industry, and classification of RP systems. Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, data files and machine details, Application.	8
Unit 2	Selective Laser Sintering Fusion Deposition Modelling	Type of machine, Principle of operation, process parameters, Data preparation for SLS, Applications. Fusion Deposition Modelling: Principle, Process parameter, Path generation, Applications.	8
Unit 3	Solid Ground Curing	Principle of operation, Machine details, Applications. Laminated Object Manufacturing: Principle of operation, LOM materials. Process details, application.	8
		Part B	
Unit 4	Rapid Tooling	Indirect Rapid tooling, Silicon rubber tooling, Aluminum filled epoxy tooling, Spray metal tooling, Cast kirksite, 3Q keltool, etc. Quick cast process, Copper polyamide, Rapid Tool, DMILS, Pro metal, Sand casting tooling, Laminate tooling soft Tooling vs. hard tooling.	10
Unit 5	Software For RP	STL files, Overview of Solid view, magics, imics, magic communicator, etc. Internet based software, Collaboration tools.	8
Unit 6	Rapid Manufacturi ng Process Optimization	Factors influencing accuracy. Data preparation errors, Part building errors, Error in finishing, influence of build orientation.	6

Text Books:

- 3. Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.
- 4. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer.

5. Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons. Additional Books:

- 1. Liou W L, Liou F W, Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press.
- 2. Kamrani A K, Nasr E A, Rapid Prototyping: Theory and practice, Springer,

Industrial Engineering Group 8th Semester

SUBJECT CODE: PEMP-141 SUBJECT NAME: Entrepreneurship

	Dolle 1 101012. Entrepreneursmp			
Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0			
Semester: 8	Teaching Hours: 48			
Theory/Practical: Theory	Credits: 4			
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%			
External Marks: 60	Duration of End Semester Exam(ESE): 3hr			
Total Marks: 100	Status: Elective V			
Additional Material Allowed in	Additional Material Allowed in ESE: Scientific Calculator			
On completion of the course, th	e student will have the ability to:			
CO#. Course Outcomes (Co	os)			
1 Identify entrepreneurial qu	uality.			
2 Develop the ability to sele	ect potential areas for self-employment.			
3 Select appropriate agency	/ ies for technical and financial support.			
4 Prepare project setup planning and project report.				
5 Explain SWOT analysis a	nd strategies to achieve goals.			
6 Identify risk factors of pro	ject and their remedial measures			

S. No.	Title	Content details(Part A)	Credit Hrs.
Unit 1	Introduction	Meaning and Importance, Evolution of term 'Entrepreneurship, Factors influencing entrepreneurship, Psychological, Social, Economic and Environmental factors, Characteristics of an entrepreneur, Entrepreneur and Entrepreneur, Types of entrepreneur- According to Type of Business, Use of Technology, Motivation, Growth and according to New generations of Entrepreneurship viz. social entrepreneurship, Edupreneurship, Health entrepreneurship, Tourism entrepreneurship, Women entrepreneurship etc. Barriers to entrepreneurship	5
Unit 2	Entrepreneur ial Motivation	Motivation, Maslow's theory, Herjburg's theory, McGragor's Theory, McClelland's Need – Achievement Theory, Culture & Society, Values / Ethics and Risk taking behavior	5
Unit 3	Creativity	Creativity and entrepreneurship, Steps in Creativity, Innovation and inventions, Using left brain skills to harvest right brain ideas, Legal Protection of innovation, Skills of an entrepreneur, Decision making and Problem Solving (steps indecision making)	6
Unit 4	Organization Assistance	Assistance to an entrepreneur, New Ventures, Industrial Park (Meaning, features, & examples), Special Economic Zone (Meaning, features & examples), Financial assistance by different agencie, MSME Act, Small Scale Industries, Carry on Business (COB) licence, Environmental Clearance, National Small Industries Corporation (NSIC), Government Stores Purchase scheme (e-tender process), Excise exemptions and concession, Exemption from income tax, Quality Standards with special reference to ISO, Financial assistance to MSME, Modernisation assistance to small scale unit, The Small Industries Development Bank of India(SIDBI), The State Small Industries Development Corporation(SSIDC), Export oriented units, Incentives and facilities to exports entrepreneurs, Export oriented zone, Export-Import Bank of India, State Industrial Development Corporation (SIDC), State Financial Corporation (SFCs), Directorate General of Supplies and Disposals(DGS & D), Registration with DGS & D, Khadi	6

		and Village Industries Commission (KVIC), Industrial Estate, Financing of	
		Part B	
Unit 5	Rules and Legislation	Applicability of Legislation, Industries Development (Regulations) Act, 1951, Factories Act, 1948., The Industrial Employment (Standing Orders) Act, 1946, Suspension, Stoppage of work, Termination of employment, Environment (Protection) Act, The sale of Goods Act, Industrial Dispute Act and other acts associated with Trade, Industry, Service and Corporate affaires amended by Parliament and State Assemblies	6
Unit 6	Starting the venture	generating business idea – sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; environmental scanning, competitor and industry analysis; feasibility study: market feasibility, technical/operational feasibility, financial feasibility; drawing business plan; preparing project report; presenting business plan to investors, Selection of the Product / Service, Aspects of a Project, Phases of a Project, Project Report, Contents of a Project Report, Performa of a Suggested Project Report for a manufacturing Organization	7
Unit 7	Functional plans	marketing plan – marketing research for the new venture, steps in preparing marketing plan, contingency planning; organizational plan: form of ownership, designing organization structure, job design, manpower planning; Financial plan: cash budget, working capital, Performa income statement Performa cash flow, perform balance sheet, break even analysis, Sources of finance: debt or equity financing, commercial banks, venture capital; financial institutions supporting entrepreneurs; legal issues: intellectual property rights patents, trade marks, copy rights, trade secrets, licensing; franching.	7
Unit 8	New venture Expansion Strategies and Issues	Features and evaluation of joint ventures, acquisitions, merges, franchising. Public issues, rights issues, bonus issues and stock splits.	6

- 1. Entrepreneurship, Hisrich, Robert D., Michael Peters and Dean Shepherded, , Tata McGraw Hill, ND
- 2. Entrepreneurship, , Brace R., and R., Duane Ireland, , Pearson Prentice Hall, New Jersy (USA).
- 3. Entrepreneurship, Lall, Madhurima, and Shikha Sahai, , Excel Book, New Delhi.
- 4. Entrepreneurship Development and Small Business Enterprises, Charantimath, Poornima, Pearson Education, New Delhi.
- 5. Entrepreneurship development and Management Singal R.K , S.K.Kataria and Sons. **Reference Books**
 - 1. Developing Entrepreneurship Pareek & Co. Learning systems, Delhi.
 - 2. Clifford and Bombak, Joseph R. Momanso.Entrepreneurship & Venture Management
 - 3. Manual for the preparation of industrial feasibility studies UNIDO
- 4. New project opportunities GITCO
- 5. EDI STUDY MATERIAL EDI, BHAT, Ahmedabad Website : http://www.ediindia.org

SUBJECT CODE: PEMP-142 SUBJECT NAME: QUALITY ASSURANCE

Programme: B. Tech. ME(P)		ME(P) L: 3 T: 0 P: 0		
Semester: 8		Teaching Hours: 48		
Theory/Practical: Theory		ry Credits: 4		
Internal Marks: 40		Percentage of Numerical/Design/Programming Problems: 10%		
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Ma	arks: 100	Status: Elective V		
Additiona	al Material Allo	wed in ESE: Scientific Calculator		
On compl	etion of the cou	urse, the student will have the ability to:		
CO#.	Course Outco	omes (Cos)		
1	Demonstrate a	nd apply the concept Inspection in an industrial organization.	y the concept Inspection in an industrial organization.	
2	Develop in-de	pth knowledge of quality control and management.		
3	Develop in-de	pth knowledge on various aspects of quality management systems		
4	Apply various	quality controls tools in the industries to enhance the quality.		
5	Develop analy	tical skills for investigating and analyzing quality management issues in the ind	ustry and	
	suggest impler	nentable solutions to those.		
6	Explain the co	ncept of reliability.		
Detailed (Contents:		0.11	
S.No.	Title	Content details	Credit	
		(Part A) Objectives and functions of inspection in industry Inspection Disputes	Hrs.	
		Objectives and functions of inspection in industry, inspection Planning,		
Unit 1	Inspection	Non-Destructive Testing Radiography Magnaflux Elugrescent Penetrant	4	
Unit I	inspection	Inspection and Illtrasonic Testing, Organization of Inspection computer	7	
		aided inspection economics of inspection reference to relevant BIS codes		
		Ouality control concept and objectives. Total Ouality Control, organization		
Unit 2	Quality	for quality control, Quality Control Procedures, concept and use of Quality	6	
	Control	Circles. Total Quality Management, Quality assurance.		
	Quality	Introduction to QMS/certification system, benefits of a QMS, ISO 9001:2000		
II:4 2	Managemen	requirement, steps to registration, documentation requirements, principles in	5	
Unit 5	t System	ISO 9000, Introduction to ISO 14000, elements and clauses of ISO 14001,	3	
	(QMS)	benefits of implementation of ISO 14000,.		
	Pa	rt B		
		Theory of statistical tolerances, general theory of control charts, control charts		
	Statistical	for variable and attributes, group control charts, control charts with variable		
Unit 4	Quality	group size, moving average and moving range charts acceptance control	8	
	Control	charts for trended universe average, cumulative sum control charts, difference		
		control charts, use of Q.C. curves.		
		Introduction to Acceptance sampling, multiple and sequential sampling plans,		
Unit 5	Acceptance	multi-level sampling plans, acceptance sampling by variables, advantages and	8	
	sampling	limitations, sampling plans by using different criteria, techno-economic	-	
		comparison of various types of sampling plans.		
Unit 6	Reliability	Basic concept of reliability, its importance in quality design, methods for its	5	
Toyt Dool	20.	improvement, failure rate curve, file testing, quality-reliability relationship.		

Kenedy, E.V. & Andrews Donald, "Inspection and Gauging", Industrial Press Inc., 1977.
 Juran, J.M. & Gryan, F.M, "Quality Planning and Analysis", Tata McGraw Hill, 1995.
 Grant, E.L. & Richards, S.L., "Statistical Quality Control", McGraw Hill, 1998.

Additional Books:

- 1. Mahajan. M, "Statistical Quality Control", Dhanpat Rai & Co., 2008.
- 2. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.

SUBJECT NAME: Probability and Statistics Programme: B. Tech. ME(P) L: 3 T: 0 P: 0 Semester: 8 Teaching Hours: 48 Theory/Practical: Theory Credits: 4 Internal Marks: 40 Percentage of Numerical/Design/Programming Problems: 60% External Marks: 60 Duration of End Semester Exam(ESE): 3hr Total Marks: 100 Status: Elective V Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to:

SUBJECT CODE: PEMP- 143

On completion of the course, the student will have the ability to:			
CO#.	Course Outcomes (Cos)		
1	Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.		
2	Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.		
3	Apply the concept of testing of hypothesis for small and large samples in real life problems.		
4	Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.		
5	Have the notion of sampling distributions and statistical techniques used in engineering and management problems.		
6	Discuss critically the uses and limitations of statistical analysis.		

Detailed Contents:

S No	Title	Content details	Credit
5.110.	1110	(Part A)	Hrs.
Unit 1		Content	Hours
	Probability	Definitions of Probability, Properties of Probability Function-I, Properties of	8
Unit 2	and Random	Probability Function-II, Conditional Probability, Independence of Events,	
Unit 2	Variables	Problems in Probability, Random Variables, Probability Distribution of a	
		Random Variable, Probability Distribution of a Random Variable-II.	
	Two-	Joint distributions – Marginal and conditional distributions – Covariance –	8
II:4 2	Dimensional	Correlation and linear regression – Transformation of random variables –	
Unit 5	Random	Central limit theorem (for independent and identically distributed random	
	Variables	variables).	
		Part B	
Ilmit 4	Design of	One way and Two way classifications, Completely randomized design,	8
Unit 4	Experiments	Randomized block design, Latin square design, 22 factorial designs.	
		Population & Samples, Distribution of Sample Statistics, Point Estimation,	8
Unit 5	Statistics	Confidence Intervals, Hypothesis Testing, 1-way Anova, Simple Regression	
		Model.	
	Statistical	Control charts for measurements (X and R charts) - Control charts for	8
Unit 6	and Quality	attributes (p, c and np charts) – Tolerance limits – Acceptance sampling	
	Control		

Text Books:

1. An Introduction to Probability and Statistics by V.K. Rohatgi & A.K. Md. E. Saleh.

- 2. Probability and Statistical Inference by Hogg, R. V., Tanis, E. A. & Zimmerman D. L.
- 3. Probability and Statistics in Engineering by W.W. Hines, D.C. Montgomery, D.M. Goldsman,

C.M. Borror.

- 4. Introduction to Probability and Statistics for Engineers and Scientists by S.M. Ross.
- 5. Introduction to Probability and Statistics by J.S. Milton & J.C. Arnold.
- 6. Introduction to the Theory of Statistics by A.M. Mood, F.A. Graybill and D.C. Boes.

Reference Books:

- 1. "Statistics for Business and Economics" Paul Newbold, William L. Carlson and Betty Thorne, Upper Saddle River, N.J. : Prentice Hall, cop. 2007, 7th ed.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Papoulis, A. and Unnikrishnapillai, S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2010.
- 4. Introduction to Probability Theory and Statistical Inference by H.J. Larson.
- 5. Probability and Statistics for Engineers and Scientists by R.E. Walpole, R.H. Myers, S.L. Myers, Keying Ye.
- 6. Modern Mathematical Statistics by E.J. Dudewicz & S.N. Mishra.

SUBJECT CODE: PEMP-145 SUBJECT NAME: MATERIALS MANAGEMENT

Programme: B. Tech. ME(P)		IE(P) L: 3 T: 0 P: 0		
Semester: 8		Teaching Hours: 48		
Theory	/Practical: Theorem	ry Credits: 4		
Interna	l Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%		
Externa	al Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total M	Iarks: 100	Status: Elective VI		
Addition	al Material Allo	wed in ESE: Scientific Calculator		
On comp	pletion of the cou	urse, the student will have the ability to:		
CO#.	Course Outco	mes (Cos)		
1	Explain the sco	ope and function of material management.		
2	Develop the functions of purchasing, inventory management and receiving & shipping.			
3	Apply business functions in the dynamic environment.			
4	Explain inventory control techniques and evaluate different inventory alternatives/strategies			
5	Analyze distinct concepts within material management and explain how these can be use materials and			
	products in Industries.			
6	Apply the conc	ept of store management in an organization.		
Detailed	Contents:			
S No	Title	Content details	Credit	
5.110.	Inte	(Part A)	Hrs.	
		Scope and importance of materials and inventory Management, Functions		
Unit 1	Material	and objectives of material Management. Introduction to Material Planning,	0	
Omt I	Management	Factors affecting Material Planning, Classification and Codification of	,	
	Materials, Standardization and Simplification.			
		Introduction to Purchasing, Classification of Purchases, Principles of		
Unit 2	Purchasing	Scientific Purchasing, Objectives and functions of purchasing, Purchase	9	
		Techniques, Purchasing Procedure, Quality considerations in purchasing.		
Unit 3	Material	Primary Handling activities- Receiving, In-storage Handling and shipping,	10	
Unit 3	Handling	Basic Handling Considerations, receiving functions.	10	
Part B				

Unit 4	Inventory Control	Inventory Costs, Inventory Classification, Inventory Management, Demand of Inventory, , lead time, stock outs, Lot Sizing, Push System vs. Pull System Inventory Control, Inventory Control Systems, Basic Stock Control Methods, Economic Order Quantity (EOQ) Models, Deterministic and Stochastic Models, EOQ and Quantity Discount, EOQ Model with Non- Instantaneous Receipt, EOQ Model with Planned Shortages, Finding the Optimal Order & Back Order Level Production Lot Size with Planned Shortages, simulation models for inventory analysis.	10
Unit 5	Store Management	Concept, Responsibilities and functions of store management, Types of stores, Coding, Store Accounting and Store Verification, Management of Surplus, Scrap and Obsolete Items.	10

- 1. Bhagde, S.D, "Production and Materials Management", U.S.G Publishers, 1995.
- 2. Plossl, G.W& Wight, O.W., "Production and Inventory Control", Prentice Hall, 1967.
- 3. Mahajan, M., "Industrial Engineering and Production Management", Dhanpat Rai & Co., 2007.

Additional Books:

- 1. Chary, S.N., "Production and Operations Management", Tata McGraw Hill.
- 2. Arora, K.C., "Production and Operations Management", Laxmi Publications.

SUBJECT CODE: PEMP-147 SUBJECT NAME: PRODUCTION PLANNING AND CONTROL

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)						
1	Describe and analyze distinct concepts within production planning and explain how these can be used						
	to plan and control the physical flow of information and products in the production companies.						
2	Know about business forecasting and market survey in the dynamic environment.						
3	Schedule production by using different techniques and evaluate different capacity						
	alternatives/strategies to meet the customer demand.						
4	Know about inventory control techniques and evaluate different inventory alternatives/ strategies.						
5	Know about the concepts of JIT-I, JIT-II and Store room operations.						
6	Demonstrate and apply the concept of Value Engineering.						

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Production Planning and Control (PPC)	Introduction and Need of Production Planning and Control, Objectives, Phases and Functions of Production Planning and Control, parameters for PPC.	6
Unit 2	Forecasting	Introduction to Forecasting, uses of forecasts, types of forecasting, forecasting: needs and uses, Forecasting v/s Prediction, Basic Elements of Forecasting, Forecasting Error Measures, Forecasting Performance	8

		Measures, Steps in the Forecasting Process, Forecasting Models, Market	
Unit 3	Operations Planning and Scheduling Systems	Components of Operations Planning and Scheduling System, Aggregate Planning (Objectives ,Process, Strategies, guidelines, methods, Advantages and Limitations), Master Production Schedule (MPS), Material Requirement Planning (MRP), Manufacturing Resources Planning (MRP II), Enterprise Resource Planning(ERP), Capacity Planning (Introduction, Measurement of Capacity Planning, Capacity Utilization and Efficiency, Estimate Capacity Requirements, Estimating Future Capacity Needs, Factors Influencing Effective Capacity), Routing (Advantages, Steps /procedure, Techniques), Scheduling (Purpose, Types, Principles, Inputs, Categories, Methodology/Techniques), Dispatching (Duties, Procedure and Rules of Dispatching)	10
	Part	B	
Unit 4	Inventory Control	Inventory Costs, Inventory Classification, Inventory Management, Demand of Inventory, Lot Sizing, Push System vs. Pull System Inventory Control, Inventory Control Systems, Basic Stock Control Methods, Economic Order Quantity (EOQ) Models, Deterministic and Stochastic Models, EOQ and Quantity Discount, EOQ Model with Non-Instantaneous Receipt, EOQ Model with Planned Shortages, Finding the Optimal Order & Back Order Level Production Lot Size with Planned Shortages, JIT-I,JIT-II, computer application in Production and Inventory Control.	8
Unit 5	Store-Room Operations	Location and layout of store-room bins, pans and boxes used for storing, books and documents used in storing, decentralized stores, inspections function of store.	8
Unit 6	Value Engineering	Introduction to Value Engineering, Objectives of value analysis, Difference between value analysis and value engineering, When to apply value analysis, Difference between Value Engineering and Cost Reduction, Value Engineering Job Plan, Techniques of value analysis/engineering, Advantages of Value Engineering.	10

- 1. Chase, Aquilano & Jacob, "Production/Operations Management", Tata McGraw Hill, New Delhi, 2000.
- 2. Krejewski, "Operations Management", Pearson Education Asia, New Delhi, 2002.
- 3. Ebert and Adams, "Production/ Operations Management", Prentice Hall of India, New Delhi, 2005.

Additional Books:

- 5. Chary, S.N., "Production and Operations Management", Tata McGraw Hill.
- 6. Arora, K.C., "Production and Operations Management", Laxmi Publications.

SUBJECT CODE: PEMP-148

	SUBJ	ECI	ſN	IAN	AE:	Research	Methodology	
()			Ē	0	1	<u> </u>		

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#	. Course Outc	omes (Cos)			
1	1 Understand the concept of Research				
2	Understand the concept of Formulation of Research Problem				
3	Understand the c	concept of Various Data Collection Techniques			
4	Understand the c	concept of Various Data Analysis Techniques			
5	Understand the c	concept of Intellectual Property Rights			
6	Understand the c	concept of Project Report Writing			
Deta	iled Contents:		•		
S.	Title	Content details(Part A)	Credit		
No.			Hrs.		
Unit 1	Introduction	Meaning of research, dissertation, thesis, Term paper, journal paper, concept notes, Research hypo thesis, need & justification, Novelty of Research, Characteristics and components of Research, Need based /specific problem solving (state / national), Topics identification, Search Procedures for statement and formulation of research problem, Literature survey, web search, textual reading, search engine application, online data search , use of internet, personal communication, bound journal/paid journal/ E-journals, institution repository, gateway,cross-ref, Scopus, Science Direct, Advanced search tools. Institution Library consultation/ borrow	5		
Unit 2	Research Formulation and Design	Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptivevs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database, development of working hypothesis.	7		
Unit 3	Data Collection and Analysis	Accepts of method validation, observation and collection of data, methods of data collection, sampling methods, data processing and analysis strategies and tools, data analysis with statically package Sigma STAT, Hypothesis Testing, Student Test, Error Analysis, Mean Squire Error, Box Analysis, Normalization of Data Series, Statistical Software SPSS, GRETL, Introduction to Evolutionary Algorithms - Fundamentals Of Genetic Algorithms, Simulated Annealing, Neural Network Based Optimization, Optimization of Fuzzy Systems. Use of Factors, ANN, ANOVA (BOTH WAYS), SIGNAL TO NOISE RATIO, Orthogonal Arrays, Replication and Data validation with predicted values	8		
Unit 4	Sampling:	Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error, Sample Size, Non Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample – Practical considerations in sampling and sample size.	7		
Unit 5	Research	Ethics-ethical issues ethical committees (human & animal). IPR-	7		
	Ethics, IPR and Scholarly Publishing	intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectualproperty rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability.			

Unit 6	Interpretation	Meaning of Interpretation, Technique of Interpretation, Precaution in	7		
	and Report	Interpretation, Significanceof Report Writing, Different Steps in Writing			
	Writing	Report, Layout of the Research Report, Types of Reports, Oral			
	Presentation, Mechanics of Writing a Research Report, Precautions for				
		WritingResearch Reports, Conclusions.			
Unit 7	Use of tools /	methods to search required information effectively, Reference Management	7		
	techniques for	Software like Zotero/Mendeley, Software for paper formatting like			
	Research:	LaTeX/MS Office, Software for detection of Plagiarism			
_					

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction toResearch Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New AgeInternational. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess EssPublications. 2 volumes.
- 4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic DogPublishing. 270p.
- 5. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- 6. Day, R.A., 1992. How to Write and Publish a Scientific Paper, CambridgeUniversity Press.
- 7. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 8. Satarkar, S.V., 2000. Intellectual property rights and Copy right. Ess EssPublications. **Reference Books**
- 1. Business Research Methods Donald Cooper & Pamela Schindler, TMGH, 9th edition
- 2. Business Research Methods Alan Bryman & Emma Bell, Oxford University Press.
- 3. Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: AProcess of Inquiry, Allyn and Bacon.
- 4. Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the
- 5. Leedy, P.D. and Ormrod, J.E., 2004 Practical Research: Planning and Design, Prentice Hall.
- 6. Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing.
- 7. TRIPS agreement and policy options. Zed Books, New York.

Elective Subjects Materials Group 8th Semester

SUBJECT CODE: PEMP-165 SUBJECT NAME: Smart Materials

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective V

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand the properties of Smart Material
2	Understand the properties of Smart Composites
3	Apply the Advancements of Smart Materials and Structures in Industrial Sector
4	Understand the properties of Electro-Rheological Smart Material
5	Understand the properties of Piezoelectric Smart Material
6	Understand the properties of Shape Memory Smart Material
Detailed	Contanta

S No	Title	Content details	Credit
5.110	The	(Part A)	Hrs.
Unit 1	Overview Of	Introduction to Smart Materials, Principles of Piezoelectricty, Perovskyte	6
	Smart	Piezoceramic Materials, Single Crystals vs Polycrystalline Systems,	
	Materials	Piezoelectric Polymers, Principles of Magnetostriction, Rare earth	
		Magnetostrictive materials, Giant Magnetostriction and Magneto-resistance	
		Effect, Introduction to Electro-active Materials, Electronic Materials,	
		Electro-active Polymers, Ionic Polymer Matrix Composite (IPMC), Shape	
		Memory Effect, Shape Memory Alloys, Shape Memory Polymers, Electro-	
		rheological Fluids, Magneto Rhelological Fluids	
Unit 2	Smart	Review of Composite Materials, Micro and Macro-mechanics, Modelling	7
	Composites	Laminated Composites based on Classical Laminated Plate Theory, Effect	
		of Shear Deformation, Dynamics of Smart Composite Beam, Governing	
-		Equation of Motion, Finite Element Modelling of Smart Composite Beams	
Unit 3	Advances In	Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials,	7
	Smart	Autophagous Materials, SelfHealing Polymers, Intelligent System Design,	
	Structures &	Emergent System Design	
	Materials		
		Part B	
Unit 4	Smart	The principal ingredients of smart materials – Thermal materials – Sensing	7
	Materials	technologies – Micro sensors – Intelligent systems – Hybrid smart materials	
	And	– An algorithm for synthesizing a smart material – Passive sensory smart	
	Structural	structures– Reactive actuator based smart structures – Active sensing and	
	Systems	reactive smart structures – Smart skins – Aero elastic tailoring of airfoils –	
		Synthesis of future smart systems	
Unit 5	Electro-	Suspensions and electro-rheological fluids – Bingham-body model –	7
	Rheological	Newtonian viscosity and non-Newtonian viscosity – Principal	
	Smart	characteristics of electro rheological fluids – The electro-rheological	
	Materials	phenomenon – Charge migration mechanism for the dispersed phase	_
Unit 6	Piezoelectric	Background – Electrostriction – Pyro electricity – Piezoelectricity –	7
	Smart	Industrial piezoelectric materials – PZT – PVDF – PVDF film – Properties	
	Materials	of commercial piezoelectric materials – Properties of piezoelectric film	

		(explanation) - Smart materials featuring piezoelectric elements - smart	
		composite laminate with embedded piezoelectric actuators - SAW filters	
Unit 7	Shape –	Background on shape - memory alloys (SMA) Nickel - Titanium alloy	7
	Memory	(Nitinol) - Materials characteristics of Nitinol - Martensitic	
	(Alloys)	transformations - Austenitic transformations - Thermo elastic martensitic	
	Smart	transformations - Cu based SMA, chiral materials - Applications of SMA	
	Materials	- Continuum applications of SMA fasteners - SMA fibres - reaction	
		vessels, nuclear reactors, chemical plants - Micro robot actuated by SMA -	
		SMA memorisation process (Satellite antenna applications) SMA blood	
		clot filter – Impediments to applications of SMA	

- 1. M.V.Gandhi and B.S. Thompson, Smart Materials and Structures Chapman and Hall, London, First Edition, 1992
- 2. T.W. Deurig, K.N.Melton, D.Stockel and C.M.Wayman, Engineering aspects of Shape Memory alloys, Butterworth –Heinemann, 1990

Reference Book:

- 1. C.A.Rogers, Smart Materials, Structures and Mathematical issues, Technomic Publising Co., USA, 1989
- 2. Srinivasan A V and Michael McFarland, "Smart Structures: Analysis and Design", Cambridge University Press, UK, 2001
- 3. Smith, C.: Smart material systems, Ralph, SIAM, 2005
- 4. Vijay, K., Varadan K., Vinoy J. Gopalakrisham S.: Smart Material Systems and MEMS: Design and Development Methodologies, Willey 2006
- 5. Addington, M., Schodek, Daniel L.: Smart materials and new technologies, Architectural Press, 2005

SUBJECT CODE: PEMP-166 SUBJECT NAME: EXTREME ENVIRONMENTAL MATERIALS

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective V

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand the behavior of high temperature materials
2	Assess behavior of various irradiation damage resistance materials
3	Understand the space environment and choosing materials for space applications
4	Analyze the high strain rate deformation behavior and capable of choosing or fabricating materials
5	Analyze the high strain rate deformation behavior and capable of choosing or fabricating materials
6	Select the appropriate method for solid waste collection, transportation, redistribution and disposal.
D / 1 1	

S.No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Fundamentals of high temperature deformation	Creep - Mechanism - Deformation Mechanism Maps - Superplasticity - Engineering materials applied in extreme environments: structural materials at high temperatures such as gas turbine applications	6

Unit 2	Introduction radiation resistance materials	Radiation damage - half life period - irradiation damage resistance - BCC structures and ferritic grade steels for radiation damage resistance applications - Liquid sodium storage materials in nuclear industry - nuclear waste disposal.	8
Unit 3	anomalous behavior of materials in space	Engineering materials applied in extreme environments: spacecraft materials - reusable space vehicles - carbon-carbon composites (CCC).	6
Unit 4	Understandin g high strain rate deformation	Elastic wave propagation - Materials under thermo-mechanical extremes (static vs dynamic; high-pressure phases; shock; detonation; cavitation; super-cooled liquids and glasses) - Shock resistant materials - armor grade materials.	8
		Part B	
Unit 5	Materials for cryogenic applications -	DBTT - FCC structures - Deformation behavior in cryogenic temperatures - cryorolling.	6
Unit 6	Materials under electromagnet ic extremes	Dielectric breakdown; new phases under extreme magnetic fields; material synthesis with extreme electromagnetic fields	8
Unit 7	Materials under thermomecha nical extremes	Static vs dynamic; high-pressure phases; shock; detonation; cavitation; supercooled liquids and glasses	6

- 1. G.E. Dieter, "Mechanical Metallurgy", Mc Graw Hill Publishers, NY,2002
- 2. Materials Under Extreme Conditions, Vincenzo Schettino and Roberto Bini, Imperial College Press, winter 2012.

Additional Books:

- 1. Basics of Solid and Hazardous Waste Mgmt. Tech. by Kanti L.Shah 1999, Prentice Hall.
- 2. Solid And Hazardous Waste Management 2007 by S.C.Bhatia Atlantic Publishers & Dist.

SUBJECT CODE: PEMP-169

SUBJECT	'NAME:	Bio	Materials
----------------	--------	-----	------------------

Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0
Semester: 8	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 15%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Identify and know the structural variations in biomaterials.
2	Determine and classify the various properties of biomaterials.
3	Explain the methods for testing implants with different aspects of biomaterials
4	Recall the cell-biomaterial interactions for constructing artificial organs.
5	Remember the Interfacing materials and ethical implications.
6	Apply the biomaterials in the healthcare sectors.

Detai	led Contents:		
S. No.	Title	Content details(Part A)	Credit
TT 1 (1			Hrs.
Unit I	Introduction	Definition of biomaterials, requirements of biomaterials, classification of	4
		Effects of physiological fluid on the properties of biomaterials.	
		responses (extra and intra vascular system). Surface properties of	
		materials physical properties of materials mechanical properties	
Unit 2	Properties of	Wound-healing and blood compatibility Surface modification of	6
	Biomaterials	biomaterials – plasma treatment, radiation grafting, self-assembled	Ŭ
		monolavers (SAMs). Langmuir – Blogett films and covalent biological	
		coatings; Protein properties that affect biomaterial surface interaction;	
		biomaterial surface interaction that affect interactions with proteins;	
		Protein adsorption kinetics; DLVO model for cell adhesion; Assays to	
		determine the effects of cell-material interactions – agar diffusion assay,	
		adhesion assays and migration assays	
Unit 3	Biocompatibil	Biocompatibility, Biocompatibility, Mechanical and Performance	6
	ity	Requirements, Regulation. Biomaterials associated infection.	
		Cytocompatibility evaluation laboratory, Tissue compatibility evaluation	
		laboratory, Hemocompatibility evaluation laboratory, Sterility evaluation	
		laboratory, Histopathology evaluation laboratory, Physiochemical	
		evaluation laboratory., Toxicology Toxicity tests: acute and chronic	
		toxicity studies (in situ implantation, tissue culture, naemolysis,	
		thromoogenic potential test, systemic toxicity, intracutaneous irritation	
Unit 1	Motallia	Steinloss steel. Co based allows. Ti and Ti based allows. Importance of	7
Unit 4	implant	stress corrosion cracking Host tissue reaction with biometal corrosion	/
	materials	behavior and the importance of passive films for tissue adhesion. Hard	
	materials	tissue replacement implant. Orthopedic implants Dental implants Soft	
		tissue replacement implants: Percutaneous and skin implants. Vascular	
		implants, Heart valve implants-Tailor made composite in medium.	
		Part B	
Unit 5	Polymeric	Polyolefins, polyamides, acrylic polymers, fluorocarbon polymers, silicon	6
	implant	rubbers, acetals. (Classification according to thermosets, thermoplastics	
	materials	and elastomers). Viscoelastic behavior: creep-recovery, stressrelaxation,	
		strain rate sensitivity. Importance of molecular structure, hydrophilic and	
		hydrophobic surface properties, migration of additives (processing aids),	
		aging and environmental stress cracking. Physiochemical characteristics of	
		biopolymers. Biodegradable polymers for medical purposes, Biopolymers	
		in controlled release systems. Synthetic polymeric membranes and their	
TT 1 (6	a .	biological applications.	
Unit 6	Ceramic	Definition of bioceramics. Common types of bioceramics: Aluminium	6
	Implant motorials	oxides, Glass ceramics, Carbons. Bioresorbable and bloactive ceramics.	
	materials	reactions: importance of interfacial tissue reaction (a.g. commic/hone tissue	
		reaction)	
Unit 7	Composite	Mechanics of improvement of properties by incorporating different	6
	imnlant	elements Composite theory of fiber reinforcement (short and long fibers	
	materials:	fibers pull out). Polymers filled with osteogenicfillers (e.g. hydroxyapatite).	
		Host tissue reactions.	

Unit 8	Testing of	In vitro testing (Mechanical testing): tensile, compression, wears, fatigue,	7
	biomaterials/	corrosion studies and fracture toughness. In-vivo testing (animals):	
	Implants	biological performance of implants. Ex- vivo testing: in vitro testing	
		simulating the in vivo conditions. Standards of implant materials.	

- 1. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.
- 2. Joon Bu Park, Roderic S, Lakes, "Biomaterials", Springer-Verlag, New York Inc., 2010.
- 3. Bronzino JD, ed. The Biomedical Engineering Handbook, Second Edition, Vol-II, CRC Press
- 4. John B.Park Joseph D. Bronzino, "Biomaterials Principles and Applications" CRC Press, 4th edition, 2003.
- 5. Hench J. Jones, "Biomaterials, Artificial Organs and Tissue Engineering", Woodhead Publishing, 2005.
- 6. Michael Lysaght and Thomas Webster, "Biomaterials for artificial Organs", Woohead Publishing series in biomaterials, 2010
- 7. Sujata V. Bhatt, "Biomaterials" Second Edition, Narosa Publishing House, 2005.
- 8. Rajendran V. and Marikani A., Materials Science, Tata McGraw Hill Pub. Company Ltd., New Delhi, 2004
- 9. Ratner A, and S.Hoffman, B. D. "Biomaterials Science: An Introduction to Materials in Medicine", Academic Press; 3 edition,November 8, 2012.

Additional Books

- 1. Jonathan Black, Biological Performance of materials, Marcel Decker, 1981
- 2. C.P.Sharma & M.Szycher, Blood compatible materials and devices, Tech.Pub.Co. Ltd., 1991.
- 3. Piskin and A S Hoffmann, *Polymeric Biomaterials* (Eds), Martinus Nijhoff Publishers.
- 4. Eugene D. Goldbera, Biomedical Ploymers, Akio Nakajima.
- 5. L. Hench & E. C. Ethridge, *Biomaterials An Interfacial approach*.
- 6. Buddy D.Ratner, Allan S. Hoffman, Biomaterial Sciences Int. to Materials in Medicine.

7. Chua, Chena.J.Y, Wanga.L.P, N.Huang, "*Plasma-surface modification of biomaterials*", Materials Science and Engineering: R: Reports, Volume36, Number 5, 29 March 2002, pp. 143-206 (64).

SUBJECT CODE: PEMP-170 SUBJECT NAME: WASTE MATERIAL & MANAGEMENT

Programme: B. Tech. ME(P)		L: 3 T: 0 P: 0	
Semester: 8		Teaching Hours: 48	
Theory/I	Practical: Theory	Credits: 4	
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100		Status: Elective VI	
Additiona	Additional Material Allowed in ESE: Scientific Calculator		
On compl	etion of the course, th	ne student will have the ability to:	
CO#.	Course Outcomes (C	Cos)	
1	Explain municipal so	olid waste management systems with respect to its physical properties, and	
	associated critical cor	nsiderations in view of emerging technologies	
2	Outline sources, types	s and composition of solid waste with methods of handling, sampling and storage	
	of solid waste.		
3	Describe the techniqu	les of disposal of radioactive waste	
4	Describe methods of	disposal of hazardous solid waste.	
5	Design the landfills for	or proper waste disposal.	
6	Select the appropriate	e method for solid waste collection, transportation, redistribution and disposal.	
	~		

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Relevant Regulations	Municipal solid waste (management and handling) rules; hazardous waste (management and handling) rules; biomedical waste handling rules; flyash rules;recycled plastics usage rules; batteries (management and handling) rules	6
Unit 2	Municipal Solid Waste Management Fundamentals	Sources; composition; generation rates; collection of waste; separation, transfer and transport of waste; treatment and disposal options	4
Unit 3	Hazardous Waste Management Fundamentals	Characterization of waste; compatibility and flammability of chemicals; fate and transport of chemicals; health effects	6
Unit 4	Radioactive Waste Management Fundamentals	Sources, measures and health effects; nuclear power plants and fuel production; waste generation from nuclear power plants; disposal options	6
		Part B	
Unit 5	Environmental Risk Assessment	Defining risk and environmental risk; methods of risk assessment; case studies	5
Unit 6	Physicochemica l Treatment of Solid and Hazardous Waste	Chemical treatment processes for MSW (combustion, stabilization and solidification of hazardous wastes); physicochemical processes for hazardous wastes (soil vapour extraction, air stripping, chemical oxidation); ground water contamination and remediation	8
Unit 7	Biological Treatment of Solid and Hazardous Waste	Composting; bioreactors; anaerobic decomposition of solid waste; principles of biodegradation of toxic waste; inhibition; co-metabolism; oxidative and reductive processes; slurry phase bioreactor; in-situ remediation	8
Unit 8	Landfill design	Landfill design for solid and hazardous wastes; leachate collection and removal; landfill covers; incineration	5

- 1. John Pichtel Waste Management Practices CRC Press, Taylor and Francis Group 2005.
- 2. LaGrega, M.D.Buckingham, P.L. and Evans, J.C. Hazardous Waste Management, McGraw Hill International Editions, New York, 1994.
- 3. Richard J. Watts, Hazardous Wastes Sources, Pathways, Receptors John Wiley and Sons, New York, 1997.

Additional Books:

- 1. Basics of Solid and Hazardous Waste Mgmt. Tech. by Kanti L.Shah 1999, Prentice Hall.
- 2. Solid And Hazardous Waste Management 2007 by S.C.Bhatia Atlantic Publishers & Dist.

SUBJECT NAME: HAZANDOUS MATENIALS			
Programme: B. Tech. ME(P)	L: 3 T: 0 P: 0		
Semester: 8	Teaching Hours: 48		
Theory/Practical: Theory	Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%		

SUBJECT CODE: PEMP-172 SUBJECT NAME: HAZARDOUS MATERIALS

External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective VI

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes (Cos)
1	Understand the behavior of hazardous materials
2	Assess the chemical properties of hazardous materials
3	Describe the regulations for the use and disposal of hazardous materials
4	Analyze the high risk of using radioactive and explosive materials
5	Analyze the high associated with hazardous organic compounds/ materials
6	Select the appropriate method for collection, transportation, redistribution and disposal of hazardous
	materials

S No	Title	Content details	Credit
5.110.	The	(Part A)	Hrs.
Unit 1	Introduction	Characteristics of Hazardous Substances, Hazardous Substances in the Workplace, Hazardous Materials in Transit, NFPA System of Identifying Hazardous Materials, CHEMTREC, National Response Center, Hazardous Materials on the Internet.	6
Unit 2	Principals of Chemical Reactions	The Chemical Reaction, Balancing Chemical Equations, Types of Chemical Reactions, Oxidation-Reduction Reactions, Factors Affecting the Rates of Reactions, Combustion, Energetics of Chemical Reactions, Spontaneous Combustion, The Fire Tetrahedron, Water as an Extinguisher, Carbon Dioxide as an Extinguisher, Halon Fire Extinguishers, Dry Chemical Extinguishers.	6
Unit 3	Hazardous Materials Regulations	The Shipping Paper, DOT Labels, DOT Markings, DOT Placards, DOT Classification of Hazardous Substances, Responding to Hazardous Material Disasters, Reporting Hazardous Substance Releases.	4
Unit 4	Water- Reactive Substances	Alkali Metals, Combustible Metals, Aluminum Alkyl Compounds, Metal Hydrides, Metal Phosphides, Metal Carbides, Water-Reactive Substances that Produce Hydrochloric Acid.	6
	•	Part B	
Unit 5	Toxic Substances	Definition of Toxic Substances, Routes of Entry into the Body, Health Effects of Toxic Substances, Factors Affecting Toxicity, Measuring Toxicity, Toxic Substances at the Fire Scene, Carbon Monoxide, Hydrogen Cyanide, Sulfur Dioxide, Hydrogen Sulfide, Nitrogen Dioxide, Ammonia, Responding to Disasters Involving Toxic Substances Poisonous Metals, Asbestos, Pesticides.	8
Unit 6	Hazardous Organic Compounds	Definition of Organic Compounds, Aliphatic Hydrocarbons, Gaseous Hydrocarbons, Aromatic Hydrocarbons, Petroleum and Petroleum Products, Functional Groups, Halogenated Hydrocarbons, Alcohols, Ethers, Aldehydes and Ketones, Organic Acids, Esters, Amines, Peroxo- Organic Compounds, Carbon Disulfide.	5
Unit 7	Explosive Materials	General Characteristics of Explosive Materials, Classification of Explosives and Blasting Agents, Storing Explosives, DOT Regulation of Explosives, Black Powder, Nitroglycerine, Dynamite, Nitrocellulose, Cyclonite, Tetryl, PETN, Primary Explosives, Responding to Disasters Involving Explosives.	5
Unit 8	Radioactive Materials	The Atomic Nucleus, Types of Radiation, Modes of Nuclear Decay, Detection and Measurement of Radioactivity, Adverse Effects of	8

	Exposure to Radiation, Effects of Ionizing Radiation, Effects of Radiation	
	on Matter, Nuclear Fission, Transporting Radioactive Materials, Radon.	

- 1. Jones and Bartlett Learning, Hazardous Materials Awareness and Operations, 3 rd Edition.
- 2. NFPA 472, Standard for Professional Competence of Responders to Hazardous Materials Incidents, Current Edition.

Additional Books:

1. Jones and Bartlett Learning, Fundamentals of Fire Fighter Skills, 2nd Edition.