PUNJAB TECHNICAL UNIVERSITY KAPURTHALA

Scheme& Syllabus of B. Tech. Production Engineering [P.E.]

3rd to 8th Semester effective for Batch 2011

Punjab Technical University

B. Tech Production Engineering (PE) Batch 2011

Approved on June 27, 2012 Contact Hours: 33 Hrs.

Third Semester

Course Code	Course Name	Load	Load Allocation Marks Distribution		Total Marks	Credits		
Code		L	T	P	Internal	External	Marks	
BTPE301	Strength of Materials	3	1	-	40	60	100	4
BTPE302	Machine Drawing	2	-	6	40	60	100	5
BTPE303	Thermal Engineering	3	1	-	40	60	100	4
BTPE304	Theory of Machines	3	1	-	40	60	100	4
BTPE305	Manufacturing Processes – I	4	-	-	40	60	100	4
BTPE306	Strength of Materials Lab.	-	-	2	30	20	50	1
BTPE307	Thermal Engineering Lab	-	-	2	30	20	50	1
BTPE308	Theory of Machines Lab	-	-	2	30	20	50	1
BTPE309	Manufacturing Processes – I Lab	-	-	2	30	20	50	1
Advisory Meeting		-	-	1	-	-	-	-
BTPE 310	Workshop Training*	-	-	-	60	40	100	1
	Total	15	3	15	380	420	800	26

^{*} Workshop Training will be imparted in the Institution at the end of 2^{nd} ssemester for Four (04) weeks duration (Minimum 36 hours per week). Industrial tour will also form part of this training.

Fourth Semester Contact Hours: 31 Hrs.

Course	Course Name	Load	l Allocat	ion	Marks Di	stribution	Total	Credits
Code		L	T	P	Internal	External	Marks	
BTPE401	Design of Machine Elements	4	1	-	40	60	100	5
BTPE402	Fluid Mechanics & Fluid Machinery	4	1	-	40	60	100	5
BTPE403	Manufacturing Processes-II	4	-	-	40	60	100	5
BTPE404	Engineering Materials and Metallurgy.	4	-	-	40	60	100	5
BTPE405	Industrial Organization and Management	4			40	60	100	4
BTPE406	Design of Machine Elements Practice	-	-	2	30	20	50	1
BTPE407	Fluid Mechanics & Fluid Machinery Lab.	-	-	2	30	20	50	1
BTPE408	Manufacturing Processes-II Lab.	-	-	2	30	20	50	1
BTPE 409	Engineering Materials and Metallurgy Lab	-	-	2	30	20	50	1
Advisory Me	eting	-	-	1	-	-	-	-
General Fitne	ess	-	-	-	100	-	100	-
	Total	20	02	09	420	380	800	27

5th SEMESTER B.Tech (Production)

	Subject	L	T	P	Int	Ext	Total	Credits
BTPE-501	Operations Research	4	1	-	40	60	100	5
BTPE-502	Machining Science	4	1	-	40	60	100	5
BTPE-503	Engineering Metrology	4		-	40	60	100	4
BTPE-504	Metal Forming	4		-	40	60	100	4
BTPE-505	Jigs, fixtures and Tool Design	3	-	-	40	60	100	2
BTPE-506	Machining Science Lab	-	-	2	30	20	50	1
BTPE-507	Engg. Metrology Lab	-	-	2	30	20	50	1
BTPE-508	Metal Forming Lab	-	-	2	30	20	50	1
BTPE-509	Jigs, fixtures and Tool Design Lab	-	-	3	30	20	50	2
BTPE-510	Industrial Training*	-	-	-	60	40	100	
	Advisory meeting			1	= -			
	Total	18	2	11			800	25

Total contact hours = 31

*Industrial Training will be imparted in the reputed Industries at the end of 4th semester of 06 weeks duration.

6th SEMESTER* B.Tech (Production)

Code	Subject	L	T	Р	Int	Ext	Total	Credits
BTPE-601	Industrial Engg	4		-	40	60	100	4
BTPE-602	Product Design and Development	4	1	-	40	60	100	4
BTPE-603	Tool and Cutter Design	4	1	-	40	60	100	5
BTPE-604	Non -Traditional Machining Methods	4		2	40	60	100	4
BTPE-DE	Department Elective-I	4		-	40	60	100	4
BTPE-605	Industrial Engg Lab.	-	-	2	30	20	50	1
BTPE-606	Product Design and Development Lab	1-	-	2	30	20	50	1
BTPE-607	Minor Project*	-	-	2	60	40	100	1
GF-600	General Fitness			-	100	-	100	
	Advisory meeting	-	-	1				
	Total	20	2	6			800	24

Total contact hours =28

*Note:- Only one Project will be carried out in parts as **Minor Project** in 6th semester and as **Major Project** in 7/8th semester. Literature Survey, problem formulation, assessment for viability of the Project, objectives and methodology for the Project shall be decided and formulated as Minor Project in the 6th Semester.

Sak 147/13

7th SEMESTER B.Tech (Production)

Code	Subject	L	T	Р	Int.	Ext	Total	Credits
BTPE-701	Computer Integrated Manufacturing	4	-	-	40	60	100	4
BTPE-702	Machine Tool Design	4	1	-	40	60	100	5
BTPE-703	Industrial Automation and Robotics	4	-	7 -	40	60	100	4
BTPE-DE	Departmental Elective-II	4		-	40	60	100	4
	Open Elective	4	-	-	40	60	100	4
BTPE-704	Industrial Automation and Robotics Lab.	-	-	2	30	20	50	1
BTPE-705	Machine Tool Design Lab.			2	30	20	50	1
BTPE-706	Major Project*	-	-	6	100	50	150	3
GF-700	General Fitness	-	-	==	100	-	100	
	Advisory meeting			1				
	Total	20	1	10			850	26

Total Contact hours = 31

*NOTE: - In the Major Project, the problem formulated as Minor Project in 6th semester is to be extended and executed. The theory, design, construction/fabrication, computer-modeling, experimentation on the fabricated models, results, analysis followed by discussion regarding suitability / non suitability of the Project or any positive gain in the project made with conclusions and recommendations for future extension of the project must be covered

8th Semester

Code	Course Title	Internal	External	Total	
BTPE-800	Software Training	150	100	250	
	Industrial	Industrial 300		500	
B11 E-000	oriented Project Training	450	300	750	

Sak 1217/13

List of Elective Subjects: Group-1 DE/PE-1.1 Artificial Intelligence in Manufacturing **DE/PE-1.2** Industrial Finishing Technology **DE/PE-1.3** Welding Technology DE/PE-1.4 Plastic and Ceramic Technology Non -Destructive Testing DE/ME-1.5 DE/ME-1.6 Maintenance and Reliability Engg DE/PE-1.7 Industrial Organization and Management **DE/PE-1.8** Industrial Tribology Group-2 DE/PE-1.9 Investment Planning DE/PE-2.0 **Technology Management DE/PE-2.1** Marketing and Financial management DE/PE-2.2 **Productivity Management** DE/ME-2.3 Operation management **Total Quality Management** DE/ME-2.4 DE/ME-2.5 Material Management DE/ME-2.6 Project Management DE/ME-2.7 Human Recourse management DE/PE-2.8 Statistics and Numerical Analysis **DE/PE-2.9** Inspection and Quality Control Group -3 **DE/PE-3.0** Industrial Packaging DE/PE-3.1 **Network Analysis DE/PE-3.2** Environmental degradation of Materials **DE/PE-3.3** Material Handling and Plant Layout **DE/PE-3.4** Prod. Planning and Control **DE/ME-3.5** Industrial Safety and Environment **DE/ME-3.6** Entrepreneurship

Modeling and Simulation

Note:

DE/ME-3.7

- 1. Minimum 10 students are required to offer a Department Elective Subject
- 2. The student shall select both the electives courses from the same group out of three groups (Group-1, Group-2, and Group -3)

Sell 12/11)

Third Semester

BTPE-301 Strength of Materials

Course Objectives:

- To prepare students to understand the simple stresses strains and deformation in components due to external loads.
- To enable the students to evaluate 2D, 3D and principal stresses (analytically and graphically) for different sections.
- To enable the student to draw the shear forces and bending moments diagram and to calculate bending stresses in structural member of an engineering system.
- Identify the applicable theory, and apply the appropriate equations to calculate the stresses, strains and/or displacements in axial members.
- To assess stresses and deformations through mathematical models of beams, twisting bars, and torque / power transmitter (Shafts).
- To calculate the internal stresses, strains and/or displacements in thin pressure vessels.
- To determine the buckling loads of various types of columns under different conditions

Expected Outcomes: At the end of this course, students should be able to:

- Perform design and analysis of thin-walled pressure vessels.
- Design the structures subjected to wide range of loading conditions, including thermal loads.
- Solve problems involving simple and combined modes, including torsion and bending

Unit I

Simple stresses and strains: Concept of stress and strain; St. Venant's principle, stress and strain diagram, Hooke's law, Young's modulus, Poisson ratio, stress at a point, stress and strains in bars subjected to axial loading. Modulus of elasticity, stress produced in compound bars subject to axial loading. Temperature stress and strain calculations due to applications of axial loads and variation of temperature in single and compound bars. Compound stress and strains, the two dimensional system; stress at a point on a plane, principal stresses and principal planes; Mohr's circle of stress; ellipse of stress and their applications. Generalized Hook's Law, principal stresses related to principal strains

Unit II

Bending moment and shear force diagrams: S.F and B.M definitions. BM and SF diagrams for cantilevers, simply supported beams with or without overhangs and calculation of maximum BM and SF and the point of contraflexure under the following loads:

- i) Concentrated loads
- ii) Uniformity distributed loads over the whole span or part of span
- iii) Combination of concentrated loads (two or three) and uniformly distributed loads
- iv) Uniformity varying loads
- v) Application of moments

Relation between rate of loading, shear force and bending moment

Unit III

Theory of bending: stresses in beams due to bending, assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular channel, I and T-sections; Combined direct and bending stresses in aforementioned section, composite / flitched beams.

Unit IV

Torsion: Derivation of torsion equation and its assumptions. Applications of the equation to the hollow and solid circular shafts, torsional rigidity, combined torsion and bending of circular shafts principal stress and maximum shear stresses under combined loading of bending and torsion.

Unit V

Thin cylinders and spheres: Derivation of formulae and calculation of hoop stress, longitudinal stress in a cylinder, effects of joints, change in diameter, length and internal volume; principal stresses in sphere and change in diameter and internal volume

Unit VI

Columns and struts: Columns and failure of columns: Euler's formulas; Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications.

Unit VII

Slope and deflection: Relationship between moment, slope and deflection, Moment area method; method of integration; Macaulay's method: Use of all these methods to calculate slope and deflection for the following:

- a. Cantilevers
- b. Simply supported beams with or without overhang
- c. Under concentrated loads, uniformly distributed loads or combination of concentrated and uniformly distributed loads

Suggested Readings / Books

- Mechanics of Materials-SI Version 2nd Edition by EP Popov, (Prentice Hall India)
- Introduction to Solid Mechanics by D.H Shames, (Prentice Hall Inc.)
- Strength of Materials by Dr.D.S Bedi; (S Chand Publishers)
- Strength of Materials by R.S Lehri and A.S. Lehri, (S.K Kataria and Sons.)
- Strength of Materials by Dr.Sadhu Singh (Khanna Publishers)
- Strength of Materials by R.S Khurmi (S.Chand & Co.)

BTPE-302 Machine Drawing

Course Objectives:

- Understanding the principles and requirements of production drawings and various symbols used in drawing.
- How to assemble and disassemble the various couplings, pipe fittings, boiler mountings, bearing, machine tool parts, screw jack, and drill press.
- To enable students to draw various machine tools and produce their material bills.
- To enable students to draft the various machine tools by computer aided drafting.

Expected Outcomes:

The course studied will enable the students to:

- **a.** Read, draw and interpret the entities being drawn in the course.
- **b.** Increase the drafting skills for various industrial applications
- **c.** Understand the concept of limits, fits and tolerances in various machine parts.

Unit I

Principles of drawing, requirements of production drawings, symbols of standard tolerances, machining symbols, sectioning and conventional representation, dimensioning, welding symbols, various types of screw threads.

- **1.** Assembly and Dis- assembly of the following manually and using computer aided drafting.
- **a)** Couplings: Pin type, flexible coupling, claw coupling, cone friction clutch, single plate friction clutch.
- **b)** Pipe and pipe fittings.
- c) IC Engine Parts: Piston, connecting rod, Cross head and eccentric
- **d)** Bearings: Swivel bearing, thrust bearing, Plummer block
- **e)** Machine tool parts: lathe tail stock, tool post.
- f) Miscellaneous: Screw jack, drill press vice.
- **2.** Drafting of simple Mechanical components on computer.

NOTE: First angle projection to be used. Drawings should contain bill of materials and should illustrate surface finish. The syllabus given above indicates the broad outlines and the scope of the subject to be covered. It is not necessary to cover all the drawing exercises of the types of machine tools mentioned above.

Suggested Readings / Books:

- Machine Drawing by PS Gill, (Kataria & Sons.)
- Machine Drawing by ND Bhatt, (Charotar)
- Machine Drawing by N. Sidheswar, (Tata McGraw Hill)

BTPE-303 Thermal Engineering

Course Objectives:

This course is designed for Production Engineering students for comprehensive study of steam power plants, its allied components and reciprocating compression machines. The various objectives of this course are as follows:

- To understand and recognize the various components of Heat transfer modes.
- To provide knowledge about different types of steam boilers / generators, boiler mountings and accessories and methods for improving boiler performance.
- To enable the students to understand combustion phenomenon.
- To understand non conventional energy resources.
- To understand the working, design and analysis of various thermal devices viz. steam nozzles, condensers and steam turbines.
- To understand working and performance of refrigeration and air conditioners.

Expected outcomes:

- Student will be able to identify, track and solve various Heat transfer problems.
- Student can recognize and understand the working of devices involved in steam power generation system.
- Student will be able to evaluate theoretically the performance of various components involved in steam power plants and reciprocating compression machines.
- Student will have ability to design some components of steam power plants and reciprocating compression machines.
- Student will be able to suggest and design different types of boilers for different commercial applications.
- Student can apply his knowledge to find out various losses from different thermal systems and can even suggest various preventive measures.

Unit I

Heat Transfer: Modes of Heat Transfer – Conduction, Convection and Radiation. Steady and unsteady heat transfer, Fourier law of conduction and thermal conductivity, Conduction of heat through a slab, through a hollow cylinder and through a hollow sphere, Natural and forced convection, convective heat transfer coefficient, Combined conduction and convective heat transfer, Critical thickness of insulation, Fin and its application, Types of fins, Analysis of heat transfer through a rectangular fin, Introduction to radiation, total emissive power, monochromatic emissive power, emissivity, Absorptivity, reflectivity and transmissivity, Black body, Opeque Body, White

body and Gray body, Stefan Boltzmann's Law, Kirchhoff's law, Plank's law, Wien's displacement law, Intensity of radiation and Lambert's cosine law. Heat Exchangers: Introduction, classification of heat exchanger, Heat exchanger analysis – Logarithmic mean temperature difference (LMTD) for parallel flow and counter flow.

Unit II

I.C Engines & Gas Turbines: Classifications of I.C. engines Working of two and four stroke petrol and diesel engines. Measurement of BHP, IHP, mechanical and thermal efficiency, Specific fuel consumption. Elementary idea of combustion phenomenon in S.I. and C.I. engines. Description of simple carburetor, fuel pump and injector. Magneto and battery ignition system. Simple Brayton Cycle, Description of open cycle Gas turbines, comparison of I.C. Engines and gas turbines and their applications.

Unit III

Refrigeration and Air Conditioning: Description of simple Vapour compression and Vapor absorption cycles, relative merits and demerits, Properties of refrigerants, Elementary idea of ozone friendly refrigerants, Concept of Psychrometry, Definitions of psychometric terms i.e. dry air, moist air and saturated air, absolute humidity, relative humidity ratio or specific humidity, degree of saturation, Dew point temperature, Dry bulb temperature and wet bulb temperature. Psychometric charts.

Unit IV

Boilers: Fire tube and water tube boilers, Description of Lancashire, Cochran, Locomotive, Babcock-Wilcox Boiler, mountings and accessories.

Unit V

Non-Conventional Power Generation: Introduction, advantages of non conventional energy sources, Wind power plants – multiple blade type, savonius type and darrieus type, Wind electric generation power plant – horizontal and vertical axis wind machines. Tidal power plant – classification and operation, single basin and double basin, Solar power plants – flat plate collector, concentrating collector, solar pond, Geothermal power plants. Biogas plants.

Suggested Readings / Books:

- Thermal Engg. by V.P. Vasandani and D.S. Kumar, (Treatise on Heat Engineering Metropolitan)
- Fundamentals of Engg. Thermodynamics by John R.Howell & Richrd O Buckius (McGraw Hill International.)
- Refrigeration & Air Condition by C.P. Arora(Tata McGraw Hill)
- Thermal Engineering by Domkundwar (Dhanpat Rai & Co.)
- Thermal Engineering by R. K. Rajput(S.Chand & Co.)

BTPE-304 Theory of Machines

Course Objectives:-

The subject of theory of machines deals with various aspects of parts of different machines. The course shall enable students to:-

- Understand the principles and fundamentals of static as well as dynamic parts.
- Provide mathematical formulae to ensure the feasibility of various parts of machines and structures.
- Introduction of different types of steering mechanisms.
- Provide technical aspects for the application of different parts in industry.

Expected Outcomes:-

At the end of the course, the student shall be able to:-

- Understand the working of various primitive components of a machine.
- Develop mathematical skills for the computation of industry related problems.
- Determine the various physical parameters of power transmission devices, friction devices and different governing devices.
- Compute the essential parameters like fluctuation of speed and energy in a flywheel of a vehicle, slotting machine etc.
- Understand the parameters involved in the working and application of different types of brakes and clutches of a vehicle.

Unit I

Basic concept of machines: Link, mechanism, kinematic pair and chain, principles of inversion, inversion of a four bar chain, slider- crank-chain, double slider crank chain and their inversions, kinematic pairs and analytical /geometrical methods for finding displacement velocity and acceleration of all basic mechanisms.

Unit II

Flywheels: Turning moment and crank effort diagrams for reciprocating machines Fluctuation of speed, coefficient of fluctuation of speed and energy, Determination of flywheel effect.

Unit III

Belts, Ropes and chains: material types of drives, idler pulley, intermediate or counter shaft pulley, angle drive, quarter turn drive, velocity ratio, crowning of pulleys, loose and fast pulley, stepped or cone pulleys, ratio of tension on tight and slack sides of belts. HP transmitted by belts including consideration of creep and slip, centrifugal tensions and its effect on HP transmitted. Flat, V-belts and rope materials. Length of belt, rope and chain drives.

Unit IV

Brakes, Dynamometers and Clutches: Types of brakes, principle, function of brakes of various types. Problems to determine braking capacity, types of dynamometer: absorption, transmission and driving. Function of Clutches, Disc and Cone clutches.

Unit V

Cams: Types of cams and followers, definitions of terms connected with cams, displacement, velocity and acceleration diagrams for cam followers, various motions: SHM, uniform acceleration and retardation, analysis of follower motion for circular .concave, tangent cam profiles.

Unit VI

Gears & Gear Trains: Toothed gears and spur gears, types of toothed gears, definitions: pitch circle diameter, pitch surface, pitch point, circular pitch, module, pitch, diametrical pitch, addendum, dedendum, clearance, outside and internal diameters, root diameter, base circle diameter, face and flank of tooth, pressure angle, path of contact, arc of contact, conditions for correct gearing, forms of teeth, involute and its variants, interference and methods of its removal. Types of gear trains, simple, compound and epicyclic gear trains, problems involving their applications, estimation of velocity ratio of worm and worm wheel, helical and spiral gears.

Suggested Readings / Books:

- Theory of Machines by PL Ballaney, (Khanna Publishers)
- Theory of Machines by Shigley, (Mc Graw Hill)
- Theory of Machines by R.S.Khurmi, (S.Chand and Sons)
- Theory of Machines by Thomas Bevan(Pearsons Publishiers)
- Theory of Machines by S.S Ratan (Mc Graw Hill)

BTPE-305 Manufacturing Process –I

Course Objectives: To provide Comprehensive knowledge about:

- Fundamentals of casting and welding processes.
- Essentials components of casting and welding processes.
- Procedure or methodologies for conducting the casting and welding processes.
- Handling of castings and welds.

Expected outcomes:

- The subject will make the students aware of fundamental principles about casting and welding processes so as to apply these principles for studying the processes.
- Student will be able to identify various equipments and accessories required for performing the casting and welding processes.
- Students will be able to demonstrate and guide the technicians for successful conduct of casting and welding processes in industrial applications.

- The subject will create the ability to test the products made by casting and welding processes so as to appreciate their utility in industrial applications.
- Student will suggest a suitable process for manufacturing of components.
- Ability to understand the latest technologies in casting and welding processes will get increased.

Unit –I

Casting: Introduction to metal casting, types of patterns, their materials and allowances. Moulding materials :moulding sand compositions & moulding sand properties, sand testing; types of moulds, moulding Machines. Cores: core sands, types of cores, core baking. Elements of Gating systems and Risers and their design. Cupola and its operation, charge calculations, types of furnaces. Casting processes: sand casting, shell mould casting, investment casting, permanent mould casting, full mould casting, vacuum casting, Die-casting, Centrifugal casting, continuous casting Casting defects, their causes and remedies. Metallurgical considerations in casting, solidification of metals and alloys, directional solidification, segregation, nucleation and grain growth, critical size of nucleus. Casting of non ferrous metals and their alloys viz. aluminum and copper. Cleaning and finishing of castings, Testing and Inspection of castings

Unit -II

Welding Welding: Introduction and classification of welding processes, welding terms (terminology), general principles, welding positions, joint design and filler metals. Gas welding and Gas cutting: Principle, Oxyacetylene welding equipment. Oxy hydrogen welding, Flame cutting. Electric arc welding: Principle, equipments, types-MIG, TIG, submerged arc and others, Welding electrodes, classification and selection of electrodes, welding arc and its characteristics, arc stability, arc blow, mechanism of metal transfer, metallurgical effects of welding, solidification and gas absorption. Thermal effects on weldment. Heat affected zone. Grain size and its control. Resistance welding- principle and their types i.e. spot, seam, projection, upset and flash. Thermit welding, electro slag welding, friction welding, plasma are welding, electron beam welding, laser beam welding, atomic hydrogen welding. Welding Defects, their causes and remedies. Brazing, braze welding, and soldering.

Suggested Readings / Books:

- Principles of Metal Casting by Heine, R.W. C.R. Loperand P.C. Rosenthal, (McGrawHill, New York).
- Welding Technology by R.S. Parmar, (khanna Publishers).
- Workshop Technology Vol.1 by B.S Raghuwanshi (Dhanpat Rai & Co.)
- Welding and Welding Technology by Little (McGraw-Hill Education (India) Pvt Ltd).
- Foundry Technology by O.P Khanna ((Dhanpat Rai & Co.)

BTPE-306 Strength of Materials Lab

- 1. To perform tensile test in ductile and brittle materials and to draw stress-strain curve and to determine various mechanical properties.
- 2. To perform compression test on C.I. and to determine ultimate compressive strength.
- 3. To perform shear test on different materials and determine ultimate shear strength.
- **4.** To perform any one hardness test (Rockwell, Brinell & Vicker's test) and determine hardness of materials.
- **5.** To perform impact test to determine impact strength.
- **6.** To perform torsion test and to determine various mechanical properties.
- **7.** Study of performance of Fatigue & Creep tests.
- **8.** To perform bending test on beam (wooden or any other material) and to determine the Young's modulus and Modulus of rupture.
- **9.** To perform Torsion test and close coiled helical spring in tension and compression and to determine modulus of rigidity/stiffness.
- 10. Determination of Bucking loads of long columns with different end conditions.

BTPE-307 Thermal Engineering Lab

- **1.** Determination of coefficient of heat transfer for free/forced convection from the surface of a cylinder / plate when kept along the direction of flow.
- **2.** Determination heat transfer coefficient of radiation and hence find the Stefan Boltzman's constant using two plates/two cylinders of same size by making one of the plates/cylinders as a black body.
- **3.** Trial of single Cylinder, four stroke diesel engine to calculate BHP, IHP, and air fuel ratio thermal efficiency.
- **4.** Morse test on multi cylinder petrol engine.
- **5.** To find C.O.P of domestic refrigerator.
- **6.** To find COP of an Air conditioner.
- 7. To find COP of water cooler.
- **8.** Study of various types of boilers Models

BTPE-308 Theory of Machines Lab

- 1. Study of working principles and construction of the different types of link motions and mechanisms.
- **2.** Study of different types of gears and gear trains.
- **3.** Study of different types of brakes and clutches.
- **4.** Study of various types of quick return mechanisms and determination of quick return effects.
- 5. To study various types of cams and followers and the working, construction of a cylindrical cam for

doing operation.

- **6.** To study the flywheel and draw turning moment and crank effort diagram for a four stroke, single cylinder petrol and diesel engines.
- 7. Study various types of belts and calculate the length of belt and power transmitted by the flat and V-belts.
- **8.** Study of various types of dynamometers and calculate the forces on a multi cylinder petrol engine.

BTPE-309 Manufacturing Processes-I Lab

Casting

- 1. To determine clay content and moisture content in a moulding sand sample.
- 2. To find shatter index of different sand samples and to compare and discuss the results
- **3.** To test tensile, compressive, transverse strength and hardness a moulding sand in dry/wet conditions.
- **4.** Determination of permeability of a moulding sand sample.
- **5.** Measurement of grain fineness number.
- **6.** To conduct a comparative study of various types of modern furnaces used in foundry industry.
- 7. To make detailed calculations for design of riser and gate for a given component and perform its casting

Welding

- 1. Specimen preparation and making of lap joint, butt joint. T-joint with Oxyacetylene gas welding.
- 2. Making of lap, Butt, T-joints etc. with electric arc welding.
- 3. Study of MIG welding equipment and making a weld joint by this process.
- **4.** Study of TIG welding equipment and making a weld joint by this process.
- 5. Study of different process parameters in Friction welding and preparing a weld joint by this process.
- 6. To study various welding equipments namely rectifiers, generators, welding torch etc.
- 7. To study the resistance welding processes and prepare a spot-welded joint.

Note: It is essential for each student to visit at least one Foundry and one Welding industry and submit a detailed industrial tour report

B. Tech Production Engineering (PE)
Batch 2011
Approved on June 27, 2012

Fourth Semester

BTPE-401 Design of Machine Elements

Course Objectives:

The main objective of the course is to design concepts of different machine elements. The aim of this course is:-

- Application of scientific principles from various fields of engineering to create new technical feats, which can perform specific functions with maximum economy.
- To help students in identifying various kinds of loading conditions and corresponding stresses in various machine elements.
- To guide the students in designing a product from the conceptual stage to the final finished form in shortest possible time.
- To make them understand the concepts in designing of permanent and temporary fasteners.
- To study design of keys and couplings, brakes and clutches.

Expected Outcomes:

After the completion of this course the students is expected to -

- To understand the design flow chart for existing and new conceptual design.
- Deal with the machine design problems in technical way using design principles and procedures.
- Understand different stresses and strains (loading conditions), and also effect of these stresses and strains on different machine members.
- To deal with problems of designing various types of joints and other important machine elements in a technical way.
- To design shafts, keys and couplings using standard steps taught in subject.
- To design the brakes and clutches.

Unit -I

Scope and meaning of machine design. Sources of design data. Design considerations from economics, manufacturing, aesthetics and ergonomics aspects. Design Process, Selection of Materials.

Unit –II

Screwed Joints: - Design of Bolted joints, Bolted Joints under eccentric Loading. Welded Joints: - Design of Fillet Welded Joints, Butt Joints, Un-symmetric Welded sections, Eccentrically loaded welded joints.

Unit -III

Riveted Joints: - Design of Lap Joints, Butt Joints, Diamond Riveting, Eccentrically loaded riveted joints.

Unit -IV

Design of Cotter and Knuckle Joints

Unit -V

Shafts: - Design of shafts under different types of loading conditions.

Unit -VI

Keys & Couplings: - Design of rectangular and square keys, muff coupling, split muff coupling, flange coupling, bushed-pin flexible coupling.

Unit -VII

Levers: - Design of straight levers, Bell -Crank levers, foot levers, hand levers.

Unit –VIII

Brakes and Clutches: - Design of friction plate and cone clutches, and simple type brakes.

Unit -IX

Introduction to Design for Manufacturing and Assembly

Suggested Readings / Books:

- Mechanical Engineering Design by J.E. Shigley (McGraw-Hill Education (India) Pvt Ltd).
- Machine Design by Dr. Sadhu Singh (Khanna Publishers)
- A text book of machine design by R.S.Khurmi & J.K.Gupta, (S Chand & Co.)
- Machine Design by D.K.Aggarwal & P.C.Sharma (S.K Kataria and Sons)
- Design and Manufacturing by Krishnamurthi, (S.K. Kataria and Sons)

NOTE: Design data book is NOT allowed in the examination.

BTPE-402 Fluid Mechanics & Fluid Machinery

Course objectives: This subject helps in introducing the fluids and their properties to the students.

The aim of the course is

- To guide the students in studying kinematics and dynamics involved during fluid flow are studied in this
 course
- To understand the dimensional analysis this is an important aspect for checking the dimensional homogeneity with the help of different methods
- To enhance the knowledge of the student in developing the skills required for working upon the operating conditions of these turbines and pumps.

Expected outcomes: After the completion of this course the students is Expected to know

- How to solve problems relating to kinematic and dynamics of fluid flow.
- How to analyze the fluid dynamic conditions and in assessing the equations involved on the basis of dimensional homogeneity
- The various problems arising in turbines and pumps.

Unit I

Fluids & Their Properties: Concept of fluid; Ideal & Real fluids; significance of fluid Mechanics; continuity concept of fluid; density, specific weight, viscosity & its dependence on temperature; vapor pressure & cavitations; compressibility & bulk modulus, Newtonian & non Newtonian fluids.

Unit II

Fluid statics, kinematics & dynamics: Concept of pressure, Pascal's Law, Buoyancy & floatation, stability of floating & submerged bodies. Classification of fluid flows; streamline, path line & streakline; continuity equation in Cartesian coordinates. Euler's equation; Bernoulli's Equation & steady flow energy equation, Impulse momentum equation.

Unit III

Dimensional Analysis: Fundamental & derived units & dimensions; dimensional homogeneity; Rayleigh's & Buckingham's Pi method for dimensional Analysis.

Unit IV

Laminar & Turbulent flows & their measurements: -Flow in circular cross section pipes; Turbulent & flow losses in pipes; Darcy Equation. -Manometers; pitot tubes; venturimeter & Orificemeter; rotameter.

Unit V

Fluid machinery concepts: Impulse momentum principle; Jet impingement on stationary & moving flat plates and on stationary or moving vanes with jet striking at center & tangentially at one end of vane, calculations for force exerted, work done & efficiency of jet.

Unit VI

Turbines: Components parts & operation of Pelton, Franics & Kaplan Turbines Draft Tube- Its function & types (No Numerical).

Unit VII

Pumps: Component parts & operation of centrifugal & Reciprocating pumps: Suction, delivery & manometric heads of centrifugal pumps; priming & priming devices. Multistage pumps, series & parallel arrangements.

- Pressure variation due to piston acceleration & acceleration effects.
- -Suction /delivery pipes in reciprocating pumps; air vessels.

Suggested Readings / Books:

- Fluid Mechanics & fluid power Engg. By D.S. Kumar (Metropolitan Publishers)
- Fluid Mechanics by R.K.Bansal, (Laxmi Publications)
- Fluid Mechanics by Potter & Wiggert (Cengage Learning)
- Fluid Mechanics by A.K Mohanty (PHI Learning Pvt.Ltd.)
- Fluid Mechanics and Hydraulic Machines by R.K.Rajput (Khanna Publishers)

BTPE-403 Manufacturing Processes-II

Course objectives: This course has been designed for providing basic knowledge of machine tools. The aim of the course is

- To make the students aware of principles and requirements for comprehensive understanding of metal cutting or machining.
- To make students aware of the existing technologies related to this process with the aim of appreciating their industrial applications.

Expected outcomes: After the completion of this course the students is Expected

- To completely understand the machining process
- To understand the various process parameters involved in different processes.
- To apply this knowledge for practical use and application of manufacturing processes in the industries.

Unit I

Lathe Machine & its operations: Lathe & its accessories, Lathe specifications, Lathe cutting tools, speed, feed, depth of cut & machining time, various operations on Lathe (turning, facing, copy turning, boring, counter boring, parting off, chamfering, threading, chamfering etc.), Attachments used on Lathe; Turret & Capstan Lathe, Tool holding devices. Detailed calculations and numerical related to material removal rate, surface finish and tool wear for turning operations

Unit II

Milling Machines & its operations:

Milling machines (Horizontal, Vertical & Universal milling machine), specifications, accessories, standard & Special attachments (Vertical milling attachment, High speed milling attachment, Slotting attachment, Universal dividing head, Angular milling attachment); milling operations; Indexing, Type of indexing (Direct, Simple, Compound, Differential, Angular); milling cutters, size, shape & material of milling cutters; numerical related to cutting speed, feed, depth of cut & machining time.

Unit III

Shapers, Planer and Slotting machine:

Types of Shaper, Planners & Slotters and its operations, specifications; quick return mechanisms (crank & slot, hydraulic) shaper tools; calculations of cutting speed, feed and machining time.

Unit IV

Press Working: Definition, Various types of presses, feeding mechanisms, Various operations (Blanking, Piercing, Perforating, Shearing, Lancing, Drawing, Coining, Embossing, Stamping.

Notching etc.); Various types of dies (Simple, Compound, Combination, Progressive, Transfer, Rubber die).

Unit V

Drilling Machines & Operations: Types of drilling machines, specifications, Drilling operations (drilling, counter sinking, spot facing, reaming, tapping etc); Multi-spindle drilling head, Drills and Reamers; Type, specifications; Numerical problems related to cutting speed, feed, depth of cut and machining time.

Unit VI

Grinding Machines: Definition, Composition of Grinding wheel, Standard marking of Grinding wheel, Shapes of Grinding wheels; Types of Grinding Machines (cylindrical, surface); Dressing and Truing of Grinding wheels; machining time; Centreless grinding, Honing, Lapping, Super finishing.

Unit VII

Boring Machines: Type of boring machines (horizontal, vertical, fine boring machine), Boring tools, deep hole boring, Machining time, Jig boring (description, hole location procedure).

Unit VIII

Broaching Machines: Types of Broaching machines, Broaching tools, Materials for Broach, Cutting action, Chip disposal, applications of broaching, advantages and limitations.

Unit IX

Gear Manufacturing: Methods used in production of spur, bevel and worm gears (Powder metallurgy, Moulding, Forming, Rolling, Gearhobbing and shaping), Gear finishing.

Suggested Readings / Books:

- Manufacturing Processes by Myron L. Begeman (John Wiley & Sons)
- Production Technology by H.M.T.(Tata McGraw-Hill Education)
- Manufacturing processes (Vol. 2.) by Hazra Chowdhary (Media Promoters & Publishers Pvt. Ltd)
- Manufacturing Processes by S. Kalpakjian (Pearsons)
- Workshop Technology (Vol.2) by B.S Raghuwanshi (Dhanpat Rai & Co.)

BTPE-404 Engineering Materials & Metallurgy

Course objectives: The aim of the course is

- To understand various types of engineering materials and their physical as well as mechanical properties.
- To understand various heat treatment processes on different metals and alloys, phase transformations, various equilibrium diagram.

Expected Outcomes: After the completion of this course the students is Expected to know

Complete information of metallurgical characteristics (atomic structures, equilibrium diagram, phase transformation) of engineering materials (ferrous and non-ferrous),

 Mechanical behaviors of the materials and application of heat treatments processes in industries.

Unit I

Atomic structure of metals crystal structure, crystal lattice of (1) Body centered cubic (ii) face centered cubic (iii) closed packed hexagonal, crystallographic notation of atomic planes, polymorphism and allotropy, Solidification of crystallization (i) nuclear formation (ii)crystal growth (iii) crystal imperfection. Elementary treatment of theories of plastic deformation, phenomenon of slip. Twinning. Dislocation. Identification of crystallographic possible slip planes and direction in F.C.C. B.C.C. C.P.H., recovery, re-crystallization, preferred orientation causes and effects on the property of metals.

Unit II

Introduction to Engineering materials; their mechanical behavior, testing and manufacturing properties of materials; physical properties of materials; classification of engineering materials.

Unit III

General principles of phase transformation in alloys, phase rule and equilibrium diagrams, Equilibrium diagrams of Binary system in which the components form a mechanical mixture of crystals in the solid state and are completely mutually soluble in both liquid state. Equilibrium diagrams of a systems whose components have complete mutual solubility in the liquid state and limited solubility in the solid state and in which the solid state solubility decreases with temperature; Equilibrium diagram of alloys whose components have complete mutual solubility in the liquid state and limited solubility in solid state (Alloy with a peritectic transformation) Equilibrium diagrams of a system whose components are subject to allotropic change. Iron carbon equilibrium diagram, phase transformation in the iron carbon diagram: (i) Formation of Austenite (ii) Transformation of austenite into pearlite (iii) Martensite transformation in steel, time temperature transformation curves.

Unit IV

Principles and applications of heat treatment processes viz annealing, normalizing, hardening, tempering; harden ability & its measurement, surface hardening processes. Defects in heat treatment and their remedies; Effects produced by alloying elements on the structures and properties of steel. Distribution of alloying elements (Si. Mn. Ni. Cr. Mo. TL. AL) in steel.

Suggested Readings / Books:

- Engg. Physical Metallurgy by Y. Lakhtin, (Mir Publishers)
- Heat Treatment of Metals by B. Zakharv (Peace Publishers)
- Engineering Metallurgy by V. Raghavan (PHI Learning Pvt. Ltd)
- Introduction to Physical Metallurgy by Avner (Tata McGraw Hill)
- Material Science & Metallurgy by O.P Khanna (Dhanpat Rai & Co.

BTPE-405 Industrial Organization & Management

Course objectives: The aim of the subject is to make students aware with-

- Types of business organization, organization structure characteristics, departmentalism.
- Concepts of industrial psychology and Management by Objectives.
- Management concepts, Need for Management, Management functions, scientific management.
- Need for planning, characteristics, steps in planning, Principles of Organizing, formal and informal organization, Steps in organizing.
- Principles of directing, Supervision, Activities of Supervisor, Leadership styles, Path goal approach.
- Introduction, Principles and Problems in Co-ordination, Management Information System.

Expected Outcomes: After studying the course the student will be able to-

- Understand types of business organization and concepts of industrial Psychology.
- Act as the supervisor and leader in Industrial Environment.
- Plan and organize the basic Industrial activities.
- Understand the modern management concepts like MBO, Management functions, scientific management

Unit I

Industrial Organization: Types of business organization, organization structure characteristics, departmentalism, authority-span of control- matching a job- division of labor-lateral relationship-delegation-chain of command-types of organization structures: line or sealer, functional, line and staff and functional committee, organization chart- question

Unit II

Industrial Psychology: Introduction-definition-classification-scope-basic concept-role application of industrial psychology Management by Objective: Definition, procedure, advantages and disadvantages of MBO, Problems in approach of MBO in India Management concepts, Need for Management, Management functions, Scientific management, Modern management approaches: Introduction to Japanese management concepts, Systems concept, Organizations as system, Approaches to management of systems.

Unit III

Planning: Need for planning, characteristics, steps in planning, Principles of Organizing, formal and informal organization, Steps in organizing, span of control, organization charts, Types of organization, Authority and Responsibility. Directing: Characteristics, Principles of directing, Supervision, Activities of Supervisor, Leadership styles, Path goal approach, Effective Leadership, Management grid, Leadership continuum.

Unit IV

Communication: Process, Types, Barriers to effective communication. Co-ordination: Introduction, Principles and Problems in Co-ordination. Management Information System: Concept, Characteristics and importance of MIS, Types of Information systems, role of computers in MIS, Operating elements of MIS, Information needs of MIS, Functions of information systems, Management reports, Strategic and project planning for MIS, Objectives and plans of MIS with business plans, Project Planning for MIS.

Suggested Readings / Books:

- Principles of Management by Koontz and donell (Tata McGraw Hill)
- Information Systems for Modern Management by Mudrick.Ross and Clagget (PHI)
- Industrial Organization and Engineering Economics by Sharma and Banga, (Khanna Publishers)

BTPE-406 Design of Machine Elements Practice

- **1.** Select a daily use product and design the conceptual design by applying the design process talking the controlling parameters
- **2.** Make a list of mechanical components and know their materials and suggest some alternative materials for the each on of them.
- 3. Design a wall bracket, which is being used in real life by actual measurement of load.
 - a. Welded joints
 - b. Riveted and bolted joints
 - c. And justify your findings
- **4.** Find a flange coupling in the college laboratory and justify its design by actual measurements.
- **5.** Design a shaft used in some practical application, by actual working and loading conditions.
- **6.** Select a braking system lever (both hand and foot lever) and justify the design parameters.
- 7. Justify the design of single plate clutch of a engine assembly
- **8.** Design of software in some high level language or excel sheets for design of a component.

BTPE-407 Fluid Mechanics & Fluid Machinery Lab

- 1. To study flow through a variable area duct & verify Bernoulli's energy equation.
- **2.** To determine coefficient of discharge for venturimeter.
- **3.** To determine coefficient of discharge for orifice.
- **4.** To study transition from laminar to turbulent flow and to ascertain lower critical Reynolds No.
- 5. To determine friction coefficients for pipes of different materials.
- **6.** To draw Characteristics of Francis Turbine.
- **7.** To study constructional features of reciprocating pump & to perform test on it for Determination of pump performance.

- **8.** To draw the characteristics of pelton turbine
- **9.** To draw characteristics of centrifugal pump.

BTPE-408 Manufacturing Processes -II Lab

- 1. Preparation of detailed working sketches describing constructional features of following machines through drawing/ sketches:
 - **a.** Lathe
 - **b.** Capstan & Turret Lathe
 - c. Radial Drilling Machine
 - d. Universal Milling Machine
 - e. Shaper and Planer
 - f. Plastic Moulding Machine
 - g. Grinding Machines (Surface, Cylindrical)
 - h. Gear Cutting Machines etc.
 - i. Hydraulic Press
- **2.** Study of lubrication system in the machine tools.
- **3.** Advanced exercises on Lathe where the students will work within specified tolerances, cutting of V-threads and square threads (internal as well as external).
- **4.** Production of machined surfaces on shaper and planer.
- **5.** Exercises on milling machines; generation of plane surfaces, production of spur gears and helical Involute gears, use of end mill cutters.
- **6.** Grinding of single point cutting tool, cutters and drills.
- 7. Study of recommended cutting speeds for different tool-work material combinations.
- **8.** Identification of different cutting tool and work materials.

BTPE-409 Engineering Materials & Metallurgy Lab

- 1. Study of different Engineering materials and their Mechanical properties.
- 2. To study the microstructures of the following materials
 - (i) Hypo Eutectoid & Hyper Eutectoid steels.
 - (ii) Hypo- Eutectic cast Iron and Hyper Eutectic cast Iron.
 - (iii)Grey and white cant Iron
 - (iv) Nodular and Malleable cast Iron
 - (v) Non-ferrous metals i.e. Al. Mg. Cu. Ni. Son. And their alloys.
- 3. Study of Iron carbon diagram and its engineering applications.

Punjab Technical University

B. Tech Production Engineering (PE)
Batch 2011
Approved on June 27, 2012

- **4.** Annealing of steel, Effect of annealing temperatures and time on hardness.
- 5. Study of microstructure and hardness of steel at different rates of cooling.
- **6.** Hardening of steel, effect of quenching medium and agitation of the medium on hardness.
- **7.** Effect of carbon percentage on the hardness of steel.
- **8.** Harden ability test by Jominy's End quench test.
- **9.** Normalizing, tempering of steel components.
- 10. To study the case hardening processes i.e. carburizing, Nitriding, cyaniding etc.
- 11. To study and construct the T-T-T diagram for steels.

Semester 5th

BTPE-501 OPERATIONS RESEARCH

Internal Marks: 40 LTP
External Marks: 60 410
Total Marks: 100

1. **Introduction:** Introduction, characteristics, objectives and necessity of operation research (OR), scope of OR in industry and management. Role of computers in OR, limitations of OR.

- Linear Programming: Introduction to linear programming, formulation of linear programming problems, graphical solution, simplex algorithm, computational procedure in simplex, duality and its concept, application of L.P. model to product mix and production scheduling problems, limitations of linear programming.
- 3. **Transportation model**: Definition of transportation model, formulation and solution methods, and degeneracy in transportation problems.
- 4. **Assignment Model:** Definition of assignment model, comparison with transportation model, formulation and solution methods, the travelling salesman problem.
- 5. **Queuing Models:** Application of queuing models, characteristics of queuing models, single channel queuing theory, solution to single channel with poison arrivals and exponential service infinite population model, Industrial applications of queuing theory.
- 6. **Simulation:** Concept and use of simulation, advantages and limitations of the simulation technique, generation of random numbers, Monte-Carlo simulation, computer-aided simulation: applications in maintenance and inventory management.
- 7. **PERT and CPM**: Work breakdown structure, network logic, critical path, CPM and PERT, slack and floats.

Suggested Books

- 1. P.K. Gupta and D.S.Hira, "Operations Research", S. Chand and company
- 2. A.H. Taha, "Operation Research", Macmillan Publishing Company
- 3. W.D. Miller and M.K Starr, "Executive Decisions and operations Research", Prentice Hall Inc, Eglewood Cliffs, N.J.
- 4. Vijay Gupta Bhushan Kumar K.K.Chawla, "Applied Operation research", Kalyani Publishers
- 5. Dr. R. K. Gupta, "Operations Research", Krishna publishers

BTPE-502 MACHINING SCIENCE

Internal Marks: 40 LTP External Marks: 60 410 Total Marks: 100

1. **INTRODUCTION TO MACHINING PROCESSES:** Definition and classification of machining processes; Introduction to single point, multipoint and abrasive cutting tools. Introduction to different machining processes parameters in turning, drilling, boring, milling, shaping, planning and grinding operations.

- 2. **TOOL GEOMETRY:** Importance of tool geometry, geometry of single point cutting tool, milling cutters, drilling tools and broaching tools.
- 3. **MECHANICS OF METAL CUTTING:** Chip formation process, type of chips, orthogonal cutting, oblique cutting, Merchant Theory, calculations of shear angle, shear stress, shear strain, strain rate, kinetic coefficient of friction; velocity relations, calculation of various forces, Lee and Shaffer theory.
- 4. **TOOL WEAR AND TOOL LIFE:** Introduction, types of tool wear, wear mechanism, tool life, variables affecting the tool life, determination of tool life exponents, machinability, simple numerical problems.
- 5. **THERMAL ASPECTS OF MACHINING:** Introduction, equations of heat flow, temperature in orthogonal cutting, experimental determination of cutting temperatures, cutting, fluids, their selection and application.
- 6. **MEASUREMENT OF CUTTING FORCES**: Introduction, need, and basic methods of measuring cutting forces, introduction to dynamometers, working principles and construction of lathe dynamometer, drilling dynamometer and milling dynamometers.
- 7. **ECONOMICS OF MACHINING**: Machining cost, optimum cutting speed, restrictions on cutting conditions, and comparison of the criteria.

BOOKS:

- 1. G.K. Lal, "Introduction to Machining Science, "New Age International Ltd,
- 2. B.L.Juneja ,G.S. Sekhon, "Fundamentals of Metal Cutting and Machine Tools", New Age International Ltd
- 3. A. Bhattacharya, "Metal cutting Principles", CBS Publishers
- 4. R.K. Rajput, "Production Technology", S Chand and company
- 5. P.C.Sharma, "Production Engineering" S Chand and company

BTPE-503 ENGINEERING METROLOGY

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. LIMITS, FITS AND TOLERANCES

Concepts of interchangeability, need for standards system of limits, fits and tolerances. BIS:919:1963 standard system, selection of limits and fits, exercise on limits, fits and tolerances, design principles for limit gauges, Taylor's principles, types of limit gauges, tolerances on limit gauges. Design of limit gauges.

2. MEASURING AND GAUGING INSTRUMENTS

Mechanical linear and angle measuring instruments, verneir calipers, micrometers, dial gauges, bevel protectors, sine bars, spirit level, optical instruments autocollimator, tool room microscope. Comparators; principle, types of comparators, mechanical, optical, pneumatic, electrical comparators.

3. GEOMETRICAL METROLOGY AND SURFACE FINISH

Concepts of form errors; straightness, flatness, roundness errors and their measurements, concept of micro and macro errors, measurement of surface roughness, stylus method using, mechanical, optical, electrical magnification methods.

4. SCREW THREADS AND GEAR METROLOGY

Elements of screw threads metrology, measurement of major, minor and effective diameters of external and internal screw threads, measurement of pitch and screw thread angle, Elements of gear metrology, measurement of gear tooth thickness, gear profile, pitch and runout for involute gears, gear rolling test.

6. TRANDUCERS

Transducers, types, governing principles of transducers; Examples. Displacement measurement, detailed study of various types of displacement transducers, Velocity measurement, linear and angular, study of velocity transducers.

7. FORCE, TORQUE AND PRESSURE MEASUREMENT.

Mechanical, pneumatic, and hydraulic load cells; torque measuring devices; dynamometers, types of strain gauges, factors affecting strain measurement; Electrical strain gauges, gauge material, fixing methods, strain gauge circuits, examples, use of strain gauges for the measurement of the force and torque, Pressure measurement, types of pressure transducer; differential pressure measuring devices, performance characteristics; low and high pressure Measurement.

Books recommended:

- 1. R.K.Jain, "Engineering Metrology", S Chand and Company
- 2. I.C.Gupta, "Engineering metrology", Dhanpat rai & sons delhi
- 3. D.S.Kumar, "Mechanical Measurement & Control", Metropolitan Publishers
- 4. Doeblin, "Mechanical Measurement", Mc graw Hill
- 5. Gharam T. smith, "Industrial Metrology", Springer

BTPE- 504 Metal Forming

Internal Marks: 40 LTP External Marks: 60 410 Total Marks: 100

1. Introduction: Classification of metal forming processes, hot and cold working processes and their advantages and disadvantages. Variables in metal forming process: Work material, tooling, friction and lubrication at tool work piece interface, mechanics of deformation, effects of deformation on mechanical and metallurgical properties, Tresca's and Von Mises yield criteria.

- 2. Rolling: Rolling of flat slabs and strips, stress evaluation of roll pressure for homogenous deformation with constant yield stress, assumptions and their justifications, evaluation of load, torque and mill power for cold rolling process, stress evaluation for rolling with high friction. Friction hill, effect of elastic deformation, minimum thickness of strip in rolling, empirical equation for measurement of rolling loads for hot and cold rolling, rolling defects, causes and remedies.
- 3. Forging: Determination of forging pressure for thin strip for low and high friction conditions, pressure distribution for sticking and sliding friction regions, forging of flat circular discs.
- 4. Drawing and extrusion processes for rods, wires and tubes, evaluation of drawing stress and force for wire drawing and extrusion under homogenous deformation without and with strain hardening conditions through conical dies, effect of friction, maximum reduction per pass under frictionless condition, effects of back pull and die geometry, optimum die angle, drawing stress for tube drawing with a conical die with and without internal support, wire drawing and extrusion defects, causes & remedies.
- 5. Metal forming lubrication, Friction at die-work piece interface, lubrication mechanisms, boundary lubrication, mixed lubrication, hydrodynamic lubrication, lubricants for wire drawing, rolling, extrusion, forging and sheet metal working. Metal forming machines, classification and characteristics of metal forming machines, metal forming hammers and presses

Books

- 1. Row, "Principles Industrial metal working processes", Prentice Hall of India
- 2. Surinder Kumar, "Metal working", Dhanpat Rai and Sons
- 3. Avitzur, "Metal Forming", Marcel Dekker
- 4. William F. Hosford, Robert M. Caddell, "Metal Forming: Mechanics and Metallurgy", Cambridge university press
- 5. R. H. Wagoner, J.-L. Chenot, "Metal Forming Analysis", Cambridge university press

BTPE- 505 Jigs, fixtures and Press Tool Design

Internal Marks: 40 LTP External Marks: 60 303 Total Marks: 100

1. **Introduction:** Definition; importance of process planning for jigs, fixtures and tool design; selection and sequence of operations, machines, tools/die sets, gauges etc.; process planning sheet; case study.

- 2. Jigs & Fixtures: Definition; classification of jigs and fixtures; When a Jig or a Fixture is needed, Principles of economics of Jigs and Fixtures; design considerations for location, clamping and guiding devices; selection of Jigs / Fixtures. Design of Drill Jigs, Milling Fixtures, Lathe Fixtures, Assembly Fixtures, Welding fixtures, Inspection fixtures, Broaching Fixtures; Hydraulic, Pneumatic and Magnetic devices for clamping; Actual design problems.
- 3. Press Tool Design: Types of Presses and selection, Press accessories and attachments; Chutes, Magazines, Hoppers, Roll feeds, Dials. Automatic stops, hand feed and pin stops; Development of blanks and scrap strip layouts; Types of Die sets, Selection between Dies; Die materials; Design considerations for Dies, actual design problems of Blanking dies, Piercing dies, Combination dies, Progressive dies, Bending dies; Design considerations for Forming and Forging dies, Trimming dies.

Books

- 1. Edward G. Hoffman, "Jig and fixture Design", Delmer cengage learing
- 2. C. Elanchezhian, T. Sunder Selwyn, B. Vijaya Ramnath, 'Design of *Jigs*, *Fixtures* and *Press* Tools', Eswar Press
- 3. Joshi, "Jigs And Fixtures", TataMcGraw -Hill
- 4. Fred Herbert Colvin, Lucian Levant Haas, "Jigs and Fixtures", BiblioBazaar
- 5. Hiram E. Grant, "Jigs *and* Fixtures Non-standard Clamping Devices", TataMcGraw -Hill

BTPE-506 MACHINING SCIENCE LAB

Internal Marks: 30 LTP
External Marks: 20 002
Total Marks: 50

- 1. Prepare a HSS single point cutting tool of given tool signature.
- 2. By using lathe tool dynamometer measure the cutting forces in all directions and calculate the following:
 - a) Shear plane angle
 - b) Coefficient of friction
 - c) Power consumption
- 3. By using the drill dynamometer measure the torque, and thrust in Drilling operation.
- 4. By using the tool work thermocouple, measure the tool chip interface temp
- 5. To determine chip reduction coefficient in turning.
- 6. To study the different mechanisms of tool wear and their measurements.
- 7. To determine Taylor Tool life exponents by Facing test
- 8. To study the effect of cutting variables on surface finish in any cutting (Turning, Drilling, Milling, Shaping, grinding etc) operation

BTPE-507 ENGINEERING METROLOGY LAB

Internal Marks: 30 LTP External Marks: 20 002

Total Marks: 50

- Measure the surface roughness of the given workpiece on surface roughness measuring instrument.
- 2. Measure the taper angle in the given workpiece by using sine bar & slip gauges.
- 3. Measure the various gear tooth profile parameters.
- 4. Perform the machine tool alignment test on lathe and radial drilling machine.
- To measure various elements of screw thread by (a)Tool Makers Microscope &
 (b) Profile Projector.
- 6. To check the flatness of surface plate by Auto-collimator.
- 7. To check the diameter of a rod by compactors and slip gauges.
- 8. Find out the strain in a given workpiece under given loading by using strain gauges. Calibration of pressure gauges.

BTPE-508 METAL FORMING LAB

Internal Marks: 30 LTP External Marks: 20 002

Total Marks: 50

- 1. To study of the effect of clearance and shear angle on the blanking and piercing operations.
- 2. To determine the effect of percentage of reduction and the semi-cone angle of the die on the drawing load.
- 3. To find the effect of percentage of reduction and the die geometry on extruding force.
- 4. Experimental determination of coefficient of friction for metal forming.
- 5. Study of the drop forging operation (flowability, forging load etc by plasticine model.
- 6. To determine roll load in the sheet rolling process.

BTPE-509 JIGS, FIXTURES AND PRESS TOOL DESIGN LAB

Internal Marks: 30 LTP External Marks: 20 004 Total Marks: 50

1. Students will be given at least one practical problem regarding design and fabrication of jig, fixture or press tool.

- 2. Working drawings of the following:-Drilling Jigs (Box type, Leaf type, Indexing type, Trunion type etc.).
- 3. Milling Fixtures
- 4. Grinding fixtures
- 5. Assembly and welding fixtures (for automobile components and frames etc.)
- 6. Drawing dies, bending dies, compound dies, and combination dies & progressive Dies.

Semester 6th

BTPE-601 INDUSTRIAL ENGINEERING

Internal Marks: 40 LTP External Marks: 60 400

Total Marks: 100

INTRODUCTION: Definition and scope of industrial engineering, role of an industrial engineer in industry, functions of industrial engineer. Department and its organization, qualities of an industrial engineer

PLANT LAYOUT AND MATERIAL HANDLING: Different types of layouts viz. Product, Process and combination layouts, Introduction to layouts based on GT, JIT and Cellular, manufacturing systems, development of plant layout, types of material handling equipment, relationship of material handling with plant layouts.

WORK STUDY: Areas of applications of work study in industry, method study and work measurements and their interrelationship, reaction of management and labour to work study, role of work study in improving plant productivity and safety.

METHOD STUDY: Objectives and procedure for methods analysis; select, record, examine, develop, define, install and maintain, recording techniques, micro motion and macro motion Study; Principles of motion economy, normal work areas and workplace design.

WORK MEASUREMENT: Objectives, work measurement techniques - time study, work sampling, Predetermined motion time standards (PMTS), Determination of time standards, Observed time, Basic time, Normal Time, Rating Factors, allowances, Standard Time.

VALUE ENGINEERING: Types of values, concept of value engineering, phases of value engineering Studies, application of value engineering.

WORK DESIGN: Concepts of job enlargements, job enrichment and job rotation, effective job design considering technological and behavioral factors.

ERGONOMICS: Introduction to ergonomics consideration in designing Man Machine systems with special reference to design of displays and controls.

- 1. Hicks, "Industrial Engg. And management", Tata McGraw Hill.
- 2. Ulrich, "Product Design and Development", Tata McGraw Hill
- 3. Suresh Dalela and Saurabh, "Work Study and ergonomics", Standard Publishers.
- 4. R. Bernes, "Motion and time study", John Wiley and sons.
- 5. D. J. Oborne, "Ergonomics at work", John Wiley and sons.
- 6. Work study by ILO

BTPE-602 PRODUCT DESIGN & DEVLOPMENT

Internal Marks: 40 LTP External Marks: 60 410

Total Marks: 100

- 1. **VISUAL DESIGN:** Basic elements and concept of visual design-line color, Balance proportion, Size shape mass, unity and variety, Special relationships and composition in two and three dimensions.
- 2. **FORM & COLOR** Elementary forms their characteristics and significance in design. Form transition, Form in relation to ergonomics, material and manufacturing process, color as an element of design, color clarification dynamics, interrelation of colors, colors and traditions; Psychological use of color form and material.
- 3. **PRODUCT GRAPHICS:** Meaning and objectives of product graphics. Basic principles of graphic design, Visual communication aspects of product graphics, Graphics of displays and control panels,
- 4. **PRODUCT DETAILING:** Standard fastening and joining details in different materials; Temporary and permanent joints: Detailing for plastic products, Detailing for fabricated products in sheet metal.
- 5. **PRODUCTS DEVELOPMENT:** Definition and objective, Role of designer in product development. Manufacturing and economic aspects of product development, Product promotions, product developments.

- 1. Mayall W.H., "Industrial Design for Engineers", London Liifee Books Ltd. 1967
- 2. Dale Huchingson R, "New Horizons for Human Factors in Design", McGraw Hill Company 19811. Indistrial Design-Mayall
- 3. Mccormick K.J. (Ed), "Human Factor Engineering", McGraw Hill Book Company Ltd. USA 1992

BTPE-603 Tool and Cutter Design

Internal Marks: 40 LTP
External Marks: 60 410
Total Marks: 100

- Introduction: Cutting Tool materials, desirable properties of cutting tool materials, Relative properties of the various tool materials and their uses. Fundamentals of cutting tool design. Principles elements of cutting tools and tool geometry.
- 2. **Design of Single Point Tools**: Design Elements and Geometrical parameters of the tool point. Design for dimensions of H.S.S Tools. Construction and design of carbide and ceramic tipped tools, Chip breaker purpose construction and design, Design of High production Tools, Principles types and their design.
- 3. **Design of Drills**: Purpose and principal types of drills, twist drill geometry, construction and design.
- 4. **Design of Form Tool**: Purpose and types of form tools, radial feed and tangential type form tool construction and design.
- 5. **Design of milling cutters**: Purpose, types and geometry of milling cutters, Design of profile sharpened plain milling enter, face milling cuter, side milling cutters.
- 6. **Design of Broaches:** Purpose and types of broaches, Design and construction of internal broaches and external surface broaches.
- 7. **Design of Reamers**: Elementary discussion on various types of reamers, construction and geometry of reamers.

- 1. Cyril Donaldson, George H. LeCain, V. C. Goold, "Tool Design", Tata McGraw hill
- 2. Arshinov & Others, "Metal Cutting Principles and cutting Tool Design and Production ",Mir Publications
- 3. Helmi A. Youssef, Hassan El-Hofy, "Machining Technology", Taylor and francis Group
- 4. Leo J. St. Clair, "Design and use of cutting tools", McGraw-Hill
- 5. William R. Jeffries., "Tool design", Prentice-Hall

BTPE-604 Non Traditional Machining

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

Detailed Syllabus:

- 1. **Modern Machining Processes**: An Overview, trends in advanced machining, classification, comparison between conventional and non-conventional machining process selection. Flexible machining system, computer integrated manufacturing.
- 2. **Advanced Mechanical Processes:** Ultrasonic machining and Abrasive Flow Machining, Abrasive Water Jet Machining- elements of process, process parameters, applications and limitations.
- 3. **Electrochemical and Chemical Removal Processes:** Principle of operation, elements and applications of Electrochemical Machining, Electrochemical grinding, Electrochemical deburring, Electrochemical honing, Chemical Machining:
- 4. Thermal Metal Removal Processes: Electric Discharge Machining-Mechanism of metal removal, , electrode feed control, die electric fluids flushing, selection of electrode material, applications. Plasma Arc Machining-Mechanism of metal removal, PAM parameters, Equipment's for unit, safety precautions and applications. Laser Beam machining- Material removal, limitations and advantages. Hot machining- method of heat, Applications and limitations. Electon-Beam Machining-, Generation and control of electon beam, process capabilities and limitations
- 5. **Hybrid Machining Processes**: concept, classification , application , Advantages

Books:

- 1. P.C. Panday and H.S. Shan, "Modern Machining Processes ", Tata Mc Graw Hill
- 2. G. Boothroyd and W.A. Knight, "Fundamentals of Machining and Machine Tools", Mareel Dekker Inc.
- 3. G.F. Benedict, "Non traditional Manufacturing Processes", Marcel Dekker Inc.
- 4. E. J. Weller, "Nontraditional Machining Processes", Society of Manufacturing Engineers, Publications
- 5. Carl Sommer, " *Non-Traditional Machining* Handbook", Advance Publishing, Incorporated

BTPE- 605 INDUSTRIAL ENGINEERING LAB

Internal Marks: 30 LTP External Marks: 20 002

Total Marks: 50

- 1. Determination of standard time for a given job using stopwatch time study.
- 2. Preparation of flow process chart, operation process chart and man-machine charts for an existing setup and development of an improved process.
- 3. Study of existing layout of a workstation with respect to controls and displays and suggesting improved design from ergonomic viewpoint.
- 4. To carryout a work sampling study in selected industry.
- 5. To conduct process capability study for a machine in the workshop.
- 6. To design a sampling scheme based on OC curve.

BTPE-606 PRODUCT DESIGN AND DEVELOPMENT LAB

Internal Marks: 30 LTP External Marks: 20 002 Total Marks: 50

Design Exercise: Design and Develop a daily use product involving the product design fundamentals

- 1. Study the product design message of the commonly used product and use them to define the product message for selected product
- 2. Study the conceptualization process and implement it to the selected product in the design exercise.
- 3. Study the role of forms and shapes in product design and apply it to the selected product
- 4. Apply the principles of visual design forth detailed design of the selected product.
- 5. Develop the product detailing for the selected product
- 6. Study the economic aspects of the product development and develop/select the manufacturing process and material for the product considering cost as the major parameters.
- 7. Study the principles of graphic design and apply it to the product

Semester 7th

BTPE-701 COMPUTER INTEGRATED MANUFACTURING

Internal Marks: 40 LTP External Marks: 60 410

Total Marks: 100

- 1. **INTRODUCTION:** Overview of manufacturing processes, types of manufacturing systems, the product cycle, computer's role in manufacturing, sources and types of data used in manufacturing, Central Processing unit, memory input/output section, computer programming, mini computer, micro computer, P.C., Super Computers.
- 2. **COMPUTER AIDED DESIGN**: Historical Perspective, Components of CAD systems, the design process, Application of Computer for Design, Manufacturing Data Base. General Information of various Software for CAD, Relation of CAD with CAM
- 3. **NUMERICAL CONTROL**: THE BEGINNING OF CAM: Historical Background, basic components of NC systems, NC Procedure, NC coordinate system and machine motions, applications and economics of NC, part programming- manual and computer assisted the APT Language.
- 4. **COMPUTER CONTROLS IN NC SYSTEMS:** Problems with conventional NC computer numerical control, direct numerical control, combined CNC/ DNC systems, adaptive control machining system computer process interfacing, New development and latest trends.
- 5. **COMPUTER AIDED PROCESS PLANNING**: Traditional process planning, retrieval process planning system, generative process planning, machinibility data system, computer generated time standards.
- 6. **GROUP TECHNOLOGY:** Introduction, part families, part classification and coding, coding system and machining cells.
- 7. **COMPUER AIDED PRODUCTION MANAGEMENT SYSTEMS**: Traditional Production, Planning and Control, Introduction to computer aided PPC, Introduction to computer aided inventory management, manufacturing resource planning (MRP-II), computer process monitoring and shop floor control, computer process control.
- 8. **COMPUTER AIDED QUALITY CONTROL:** Traditional quality control, computer **in** quality control, contact inspection methods, Non contact inspection methods, optical and non optical computer aided testing.
- 9. **COMPUTER AIDED MATERIAL HANDLING:** Traditional Material handling, computer control on material handling, conveying, picking. Ware house control, computerized material handling for automated inspection and assembly.
- 10. **COMPUTER INTEGRATED MANUFACTURING SYSTEMS**: Introduction, types special manufacturing systems, flexible manufacturing systems (FMS), Machine tools and equipment, material handling systems, computer control systems.

- 1. Groover & Zimmer, "CAD/ CAM", Prentice Hall
- 2. Groover, "Automation Production Systems and CIMS", Prentice Hall.
- 3. Beasanat & Lui, "CAD/ CAM", EWP.
- 4. Material Handling Hand Book, McGraw Hill.
- 5. Groover Mitchell, "Industrial Robotics", McGraw Hill.

BTPE-702 MACHINE TOOL DESIGN

Internal Marks: 40 LTP External Marks: 60 410

Total Marks: 100

- **1. INTRODUCTION:** General requirements to machine tools, Machine tool design recommendations, Classification of motions to shape surface, Machine tool drives for rectilinear motion, Periodic motion, reversing motion etc.
- 2. KINEMATICS OF MACHINE TOOLS: Kinematics or gearing diagram of Lathe, drilling machine, milling machine etc. Main drive and feed drive, principal specification of machine tools.
- **3. DESIGN OF KINEMATICS SCHEME:** Methods to determine transmission ratios for drives. Development of kinematics scheme, minimum of transmission, transmission groups, Determination of number of teeth on gears.
- **4. SPEED AND FEED BOXES:** General requirement, Design of gear trains, types of speed boxes, speed changing devices, feed boxes, characteristics of feed mechanism, types of rapid traverse mechanisms, variable devices.
- **5. SPINDLE DESIGN AND SPINDLE BEARINGS:** Main requirements, Materials and details of spindle design, spindle bearings, bearings, types of bearings and their selections, bearing materials.
- 6. **BED, COLUMNS, TABLES AND WAYS:** Materials, typical constructions and design.
- 7. **MACHINE TOOLS CONTROL SYSTEMS:** Requirement of control system, selection and construction of control systems, Mechanical control system, predilection control, remote control safety devices.
- 8. **MACHINE TOOL DYNAMICS:** Dynamic performance, dynamic and elastic system of Machine, tools. Dynamics of cutting forces, tool chatter.

- 1, Sen and Bhattacharya, "Machine Tools Design", CBS Publishers
- 2. N.K. Mehta, "Machine Tool Design", Tata Mc Graw Hill.
- 3, N. Acherkan, "Machine Tool Design, Four Volumes", Mir Publishers
- 4. P. H. Joshi, "Machine Tools *Handbook:* Design *and* Operation", McGraw Hill Professional.
- 5. S.K. Basu and D.K. Pal, "Design of machine tools", Oxford and IBH

BTPE-703 INDUSTRIAL AUTOMATION AND ROBOTICS

Internal Marks: 40 LTP External Marks: 60 400

Total Marks: 100

Detailed Contents

- 1. **Introduction**: Concept and scope of automation: Socio economic consideration: Low cost automation.
- 2. Fluid Power Control: Fluid power control elements and standard graphical symbols. Construction and performance of fluid power generators; Hydraulic and pneumatic cylinders construction, design and mounting; Hydraulic and pneumatic valves for pressure, flow and direction control: Servo valves and simple servo systems with mechanical feedback, governing differential equation and its solution for step position input; Basic hydraulic and pneumatic circuits.
- 3. **Pneumatic Logic Circuits**: Design of pneumatic logic circuits for a given time displacement diagram or sequence of operations.
- 4. **Fluidics**: Boolean algebra; Truth tables; Conda effect; Fluidic elements their construction working and performance characteristics: Elementary fluidic circuits.
- 5. **Transfer Devices and Feeders**: their Classification: Construction details and application of transfer devices and feeders (Vibratory bowl feeder, reciprocating tube feeder and centrifugal hopper feeder).
- 6. **Electrical and Electronic Controls**: Introduction to electrical and electronic controls such as electromagnetic controllers transducers and sensors, microprocessors, programmable logic controllers (PLC); Integration of mechanical systems with electrical, electronic and computer systems.
- 7. **Robotics**; Introduction, classification based on geometry, devices, control and path movement, End effectors types and applications: Sensors types and applications. Concept of Robotic/Machine vision, Teach pendent.
- 8. **Industrial Applications** of Robots for material transfer, machine loading / unloading, welding, assembly and spray painting operations.

Books

- 1.A. K. Gupta, "Industrial Automation and Robotics", Laxmi Publication (P) Limited
- 2. Anthony Esposito, "Fluid Power with applications" Pearson prentice Hall
- 3. SR Majumdar, "Pneumatic Control", Tata McGral Hill
- 4. SR Deb, "Robotics and Flexible Automation", Tata McGral Hill
- 5. Harry Colestock, "Industrial robotics: selection, design, and maintenance.

BTPE-704 INDUSTRIAL AUTOMATION AND ROBOTICS LAB

Internal Marks: 30 LTP External Marks: 20 002

Total Marks: 50

- 1. Design and assembly of hydraulic / pneumatic circuit.
- 2. Study of power steering mechanism using cut piece model
- 3. Study of reciprocating movement of double acting cylinder using pneumatic direction control valves
- 4. Use of direction control valve and pressure control valves clamping devices for jig and fixture
- 5. Study of robotic arm and its configuration
- 6. Study the robotic end effectors
- 7. Study of different types of hydraulic and pneumatic valves

BTPE-705 Machine Tool Design Lab

Internal Marks: 30 External Marks: 20

LTP 002

Total Marks: 50

- 1. Construction of kinematics diagrams of the following machines (using tracing paper method / CAD software):
 - a. Lathe Machine
 - b. Drilling Machine
 - c. Milling Machine
- 2. Construction of Gearing diagrams of the following machines:
 - a. Lathe Machine
 - b. Drilling Machine
 - c. Milling Machine
- 3. Determination of number of teeth on gears using speed chart, ray diagram and gearing diagram.

DE/PE-1.1 ARTIFICIAL INTELLIGENCE IN MANUFACTURING

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. Introduction

Concept and Understanding A-I, Representation of facts, Predicates and predicate expressions and types Semantics with and without multiple arguments., Variables and queries, Single and multidirectional queries matching alternatives, multi condition queries, negative predicate expressions, back tracking. The generate and test scheme.

2. Definitions and Inferences

Rules and fact orders, rules as programs, rules in natural language, rules; without right side, back tracking with rules, transitive and inheritance/inferences.

3. Arithmetic and lists in prolog

Comparisons, assignments reversing, lists creating and processing predicates combining list predicates.

4. Control structure for rules based systems

Backward and forward chaining, Hybrid control structures, meta rules decision lattices, concurrency in control structures, AND -OR-NOT Lattices, randomness in control structures, grammars for interpreting languages. Rule based system- implementation:- Backward chaining, virtual facts and catching, implementation. Input/output coding, intermediate predicates, probability in rules, independence- assumption and or combination. Search:-State operators, search as graphical traversal search strategies; depth first and breadth first heuristics. cost and evaluation function optimal path search. Backward VS. forward chaining using probability in search.

5. Abstraction of facts

Partitioning facts, frames and slots, frames with components, frames as forms, slot inheritance, past-kind inheritances, extension Vs. intentions, procedural attachment, frames in prolog, frames for natural language under standing.

- 1. C.Neil Rowe, "Artificial Intelligence through prolog", Prentice Hall.
- 2. Ignizio, "Introduction to Expert Systems", McGraw hill.
- 3. Avron Barr, Paul R. Cohen, Edward A. Feigenbaum, "Handbook of Artificial intelligence", Addison-Wesley
- 4. P.H.Winston,"Artificial intelligence",
- 5. Stuart Russell, "Artificial Intelligence", Pearson prentice Hall

DE/PE1.2 INDUSTRIAL FINISHING TECHNOLOGY

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. FINAL FINISH SURFACE OPERATIONS

Introduction to finishing operations, significance and applications in Industry, classification of Industrial finishing processes. Mechanical Finishing processes: Deburring, polishing, buffing, barrel and vibratory finishing, spindle finishing, dry and wet blasting, shot peening, power brushing, brush principles, techniques and compassion of the processes. Chemical and electrochemical finishing, chemical polishing. Cleaning, chemical, flame, steam, ultrasonic cleaning, vapor degreasing. Advanced Finishing operations: Magnetic Abrasive finishing, Magnetic Float polishing, Chemo-Mechanical Polishing

2. COATINGS;

Inorganic methods, coating system, coating composition and properties, applications, electroplating, equipment and working, electrolytes, Anodizing ;mechanism, characteristic of anodic coating, equipment and electrolytes. Mechanical plating, hard facing, metal hot dipping, galvanizing, tin plating flame spray coating, metallizing, vacuum metalising. sputtering, chemical vapor phase depositon. Painting ;and organic coating, polymerization methods. undercoating, brush dip, flow, Electrolytic spraying. Rust prevention, principles, types selection of coatings, safety.

- 1. B.F. Blumdell, "Introduction to Metal Finishing Equipment", Pergamon Press.
- 2. Modern Electroplating, John Wiley.
- 3. Tool and Manufacturing Engineer's handbook, Society of Manufacturing Engineers
- 4. Electroplating Engineering Hand Book, Reinhold.
- 5. C.R.Martin, Technology of paints, Varnishes, and Lacquers, Van Nostrand Reinhold.

DE/PE-1.3 WELDING TECHNOLOGY

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

1. Introduction:

Introduction to Welding technology, Classification of welding processes, Metallurgy of welding, metallurgical changes in weld metal, heat affected zone, gas metal reaction, liquid metal reaction and solid state reaction, weldability, Testing of welding joints, weld design and process selection, effects of elements on welding of ferrous and non-ferrous metal and their alloys

2. **Power Sources and metal transfer:** Basic characteristics of power sources for various arc welding processes, arc length regulation in mechanized welding processes, Mechanism and types of metal transfer in various arc-welding processes.

3. Fusion Welding

Comparison of TIG, MIG and Co2 welding processes, Plasma arc, submerged arc welding, electro gas and Electroslag welding,

4. Solid State Welding:

Classification of Solid State Welding processes, Mechanism of solid state welding. Applications of friction welding, diffusion welding, cold pressure welding and ultrasonic welding. High energy rate welding,

5. Advanced Welding processes:

Technology, Scope and Application of Electron beam Welding , Laser welding, Under Water Welding processes.

- 1. J. F. Lancaster, "The Physics of Welding", Pergamon Press
- 2. Lancster, "The metallurgy of welding", Georga Allen & Unwin Ltd. U.K.
- 3. Welding Handlook, Vol.1 & 2, Seventh edition; American Welding Society.Metal Handbook Vol.16, 73. ASME.
- 4. The solid phase welding of metals by Tylecote; Edward Arnoli P Ltd. Richard, "Welding and Welding Technology", Mc.Graw Hill.
- 5. Udin, "Welding for Engineers", Frame & wuff; Johnmiles.

DE/PE1.4 Plastic and Ceramic Technology

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

- 1. Glossary of Terms Associated with Plastic Engineering. Thermoplastics and thermo sets, their properties. Mechanical & physical properties of plastics. Selection of plastics for different uses and their limitations.
- 2. Polymer processing techniques such as extrusion, compression and transfer moulding. Injection moulding, blow moulding, thermoforming, rotational moulding, calendaring, Bag moulding reaction moulding.
- 3. Joining and assembling of plastics: Processes.
- 4. Design of moulds for thermo sets: Compression moulds, transfer moulds, injection moulds, runner and gate design, vents.
- 5.Design of moulded products, wall thickness, fillets and radii, ribs, under, cuts, drafts, holes, threads, inserts parting lines, surface treatment mould design for avoiding warpage.
- 6. Standards for Tolerances on moulded articles: Design consideration.
- 7. Casting of acrylics, phenolics and epoxies, polyesters and nylons.
- 8. Ceramics and non-ceramic phases: Common ceramics, Crystal structures. binary and ternary ceramics. Silicates, clays, graphite and carbides, General Properties of ceramics. Deformation and creep. Toughening, Mechanics. Ceramic processing techniques, material selection for general applications and industrial application, limitations of ceramics.

- 1. A.W. Birley, B. Howarth, "Mechanics of plastics processing properties", Hana Publisher edition, 1991
- 2. J.E. Mark, R. West, H.P. Allocock, "Inorganic Polymers", Prentice Hall, 1992
- 3. Fried ,"Poly. Science and Technology", Prentice Hall
- 4. Charles Harper, "Handbook of Plastics Technologies", McGraw-Hill.
- 5. Plastic Engg. Data Book, Glanill

DE/ME-1.5 NON-DESTRUCTIVE TESTING

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. Introduction

Classification of techniques of material testing, Need and Significance of Non Destructive Testing methods, type of Non Destructive testing methods,

2. Radiographic Examination

Radiant energy and radiography, practical applications, X-ray and Gamma -ray equipment, effect of variables on radiographs, requirement of a good radiograph, interpretation of radiograph, safety precautions, Xeroradiography

3. Magnaflux methods

Basic principles, scope and applications, magnetic analysis of steel bars and tubing magnetization methods, equipment, inspection medium, preparation of surfaces Fluorescent Penetration inspection, Demagnetization

4. Electrical and ultrasonic Methods

Basic principles, flaw detection in rails and tubes (Sperry Detector), Ultrasonic testing surface roughness, moisture in wood, Detection of defects in ferrous and non ferrous metals, plastics, ceramics, measurement of thickness, hardness, stiffness, sonic material analyzer, proof tests, concrete test hammer

5. Photoelasticity

Concept and applications of Plane and circular polarization, Photostress, models,

Rooks

- 1. H.E. Davies, G.E Troxell, GFW Hauck, "The testing of Engg materials", Mc Graw Hill Publishers
- 2. W.H Armstrong, "Mechanical Inspection", Mc Graw Hill Publishers
- 3. Paul E. Mix, P.E., E.E., "Introduction to *Nondestructive Testing*", Johan wiley and sons.
- 4. Baldev Raj, Tammana Jayakumar, M. Thavasimuthu", Practical *Non-Destructive Testing*", Wood Head Publishing Limited
- 5. B. Hull, Vernon B. John, "Non_Destructive Testing", Springer Verlag Gmb

DE/ME -1.6 MAINTENANCE AND RELIABILITY ENGINEERING

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

- 1. Introduction: Objective and characteristics of maintenance function; Organization of the maintenance system; Operating practices in maintenance. Maintenance record keeping.
- 2. Cost Aspect of Maintenance: Costs of machine breakdown; estimation of life cycle costs; Application of work measurement in maintenance; Manpower planning and training, Incentive payments for maintenance
- 3. Planning of Maintenance Activities: Evaluation of alternative maintenance policies breakdown, preventive and predictive maintenance; fault diagnosis and condition monitoring techniques; simulation of alternative practices; Development of preventive maintenance schedule; House keeping practices; total productive maintenance
- 4. Maintenance Engineering: Maintenance requirements of mechanical, electrical, process and service equipment; Safety aspect in maintenance; Aspect of lubrication; chemical control of corrosion; Computerized maintenance information systems
- 5. Reliability concept and definition, configuration of failure data, various terms used in failure data analysis in mathematical forms, component and system failures,; uses of reliability concepts in design and maintenance of different system.
- 6. Reliability and Availability of Engineering systems: Quantitative estimation of reliability of parts; Reliability of parallel and series elements; Accuracy and confidence of reliability estimation; Statistical estimation of reliability indices; Machine failure pattern; Breakdown time distribution
- 7. Reliability improvement; Reliability in design, reliability in engg, systems, systems with spares, reliability simulation, redundant and stand by systems, confidence levels, component improvement element, unit and standby redundancy optimization and reliability-cost trade off. Fault Tree Analysis: Introduction and importance, fault tree construction, reliability calculations from fault tree, tie set and cut set methods, event tree and numerical problems.

Books

- 1. Higgins LR, "Maintenance Engineering Handbook ", McGraw Hill
- 2. Clifton, RH, "Principles of Planned Maintenance", Arnold Lodon
- 3. Garg HP, "Industrial Maintenance", S. Chand and Co
- 4. A Kelly, "Maintenance planning control", (Indian ED)
- 5. S.K Sinha, "Reliability Engg", Wiley Eastern.

DE/PE-1.8 INDUSTRIAL TRIBOLOGY

Internal Marks: 40 LTP External Marks: 60 3 1 0

Total Marks: 100

- Introduction Tribological considerations; Nature of surfaces and their contact; Physicmechanical properties of surface layer Geometrical properties of surfaces, methods of studying surfaces; Study of contract of smoothly and rough surfaces.
- 2. Friction and wear: Role of friction and laws of static friction, causes of friction, adhesion theory, Laws of rolling friction; Friction of metals and non-metals; Friction measurements.
- 3. Definition of wear, mechanism of wear, friction affecting wear, wear measurement; Wear of metals and non-metals.
- 4. Lubrication and lubricants: Introduction, dry friction; Boundary lubrication; classic hydrodynamics, hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants, Types of lubricants and their industrial uses; properties of liquid and grease lubricants; lubricant additives, general properties and selection.
- 5. Special Topics: Selection of bearing and lubricant; bearing maintenance, diagnostic maintenance of tribological components; lubrication systems; Filters and filtration.

- 1. O'Conner and Royle, "Standard Hand Book of Lubrication Engg.", McGraw Hills Co
- 2. Halling, "Introduction to Tribology", Wykeham Publications Ltd.
- 3. Raymono O. Gunther, "Lubrication", Bailey Bros & Swinfan Ltd.
- 4. Rearing Systems, Principles and Practice, PT Barwll
- 5. Basic Lubrication Theory, A Cameron (Indian Edition)

DE/PE-1.9 INVESTMENT PLANNING

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

1. INTRODUCTION TO FINANCE:

Evolution of finance objective of the firm. time value of money present values, internal rate of return or yield bond returns. The return from a stock investment, dividend discount models.

2. MARKET RISKS & RETURNS:

Efficient financial market security portfolios. multiple security portfolio analysis and selection, capital asset pricing model, expected returns for individual security.

3. FINANCIAL PLANNING;

Importance of financial steps factors, limitations, concept of capital; and it is management, fund flow and Cash flow analysis.

4. PROJECT IDENTIFICATION & EVALUATION: Search for a business idea, project identification project planning, project appraisal, project evaluation under risk. under uncertainly, analysis of non-financial aspects.

5. INVESTMENT ANALYSIS:

Introduction to investment analysis, discounted cash flow criteria for economic evaluation-ROL_ payback, MAP equipment selection, risk analysis, break even point, capacity planning, portfolio selection and technological forecasting.

6. CAPITAL INVESTMENT;

Principles of capital investment. Methods of evaluation, Depreciation and other refinements in Cash flow information, inflation and capital budgeting, risks in capital budgeting required returns for companies and acquisitions.

BOOKS;

- 1. J.M.Pandey, "Financial Management", Vikas Publishing
- 2. James Van Home, "Financial Management & Policy", Prentice Hall International
- 3. Harold Kerzner, "Project Management", John wilay and sons
- 4. Prasanna Chandra, "Financial Management", Tata McGraw Hill
- 5. Geoffrey Hirt, Stanley Block, Somnath Basu", Investment Planning",

DE/PE-2.0 Technology Management

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

- 1. Issues and Application, concepts to technology; role and importance of technology management, Dimensions of technology management, technology management in India.
- 2. Technological Change:

Nature of technological change, motivation for technological change. Invention and Innovation, Technology Life Cycle, technology monitoring.

- 3. Technology Forecasting:
 - Objectives and approaches, methodology of technological forecasting Delphin technique, growth curves, morphological analysis, technological discontinuities Indian technology Vision 2020.
- 4. Technology Planning:
 - Technology and Socio economic Planning, choice of technology, Process of technology generation, Integrating business and technology strategies, technology development approaches, Technology audit.
- 5. Organisation for technology management; technological change and manufacturing complexity risks in new technology projects, implementing technology.
- 6. Management of R & D:
 - Corporate strategy, Selection of R & D projects, Managing R & D projects, Marketing of R & D.
- 7. Management of Innovation: Radical and cyclic innovative processes, technology strategy and innovation.
- 8. Technology Absorption and Diffusion:
 - Technology dependence, concepts in technology absorption in technology absorption, management of technology absorption, technology absorption and adaptation scheme (TAAS), concepts of diffusion of technology, Prospective on diffusion, developing diffusion strategies.
- Technology Transfer: Models of technology transfer, technology transfer modes, Dimensions of technology transfer, Premising of technology government policies on technology transfer. Role of Intellectual Property Rights: Nature of IPR, Patent, Trademark and copy rights. Legal aspects.
- Managing Process Technology: Continuous improvement technology integration, product and process technology techniques of improvement, economics of improvement.
- 11. Technology as Competitive Strategy: Competitive analysis, core competitive competencies, technology leadership, adoption of new technology, marketing of new technology. Case studies on technology management.

Books

- 1. Frederick Betz, "Strategic Technology management", McGraw Hill
- 2. Yao Tzu Li, David G. Jansson, Ernest G. Cravalho, "Technological Innovation in Education", Van Nostrand
- 3. Gerstenfeld, "Effective Management R & D", Addision Wesley
- 4. Science Technology and Industrial Development in India, S.C. Pakrashi & G.P. Phondke
- 5. Richard C. Dorf, "The Technology Management Handbook"

DE/PE-2.1 MARKETING & FINANCIAL MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. Marketing Management:

Definition of Marketing & its Scope, marketing Vs Selling Consumer Vs Industrial Marketing, Marketing Mix, Strategic planning. Marketing Management concept, Marketing Research Process & Techniques of Marketing Research. Consumer Behavior Factor affecting Consumer Behavior and Buying Processes. Market Segmentation - Bases for Segmenting Consumer and Industrial Segments. Product Mix, Product life cycle and ;Marketing Strategies in various stages of PLC,

2. Pricing decisions

Price Setting Procedure and various Methods of pricing. Nature of Marketing Channels in Consumer, Industrial and Service Sectors, Channel Design Decisions, Promotion Mix and Nature of each Promotional

3. Financial Management:

Nature, Scope and objectives of Financial Management. Investment Decision Making and Capital Budgeting Techniques - Pay Back Method. Average RAte of REturn Method, Net Present Value method. Sources of Long Term and Short Term Funds, Lease Financing. Working Capital Management- Concept FActors affecting Working Capital Needs. Cost of Capital - Equity, Preference Share Capital and Debt. Ratio Analysis

- 1. Philip Kotler, "Marketing, Management", Pearson prentice Hall
- 2. Financial Management. I.M.Panday.
- 3. Ramaswamy & Namakumari, "Marketing Management", Macmillan,
- 4. J.C.Gandhi, "Marketing Management", Macmillan Publishers India Itd
- 5. Prasanna Chandra, "Financial Management", Tata McGraw Hill

DE/PE-2.2 PRODUCTIVITY MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

1. Introduction: Definition of Productivity, Productivity and performance, production, benefit cycle, Industrial productivity, scope of productivity management, factors affecting productivity, different approaches to productivity.

- 2. **Productivity Measurement:** Need of productivity measurement, productivity measurement approaches, total & partial productivity, productivity measurement models and their comparison, productivity measurement parameters, productivity measurement indices, work study and productivity.
- **Productivity Planning:** Causes for productivity changes, productivity models, applications of different planning models, productivity planning executives and their responsibilities.
- **4. Productivity Evaluation:** Productivity evaluation, productivity evaluation models, evaluation tree model, successive, time period models, applications of different evaluation models, role of evaluating executives and their responsibilities.
- **5. Productivity Improvement:** Causes of poor productivity, remedies of poor productivity, methods to improve productivity, design of productivity improvement programmes.
- **6. Dynamic Programming Of Productivity Problems:** Static and dynamic causes of lower productivity, optimization of productivity.

Books

- 1. Hassan M.Z.P., "Productivity Models", A&N Printing, Chicago
- 2. Goodwin H.F., "Improvement in Productivity", Wiley, New York
- 3. Prem Vrat, "Productivity Management", Narosa Publishing House, New Delhi.
- 4. David J. Sumanth, "Productivity Engg. & Management", TMH, New Delhi
- 5. Mali. P., "Improving Total Productivity", Wiley, New York

DE/ME -2.3 OPERATIONS MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. NEED AND SCOPE OF OPERATION MANAGEMENT: Types of production system and their characteristics, productivity definition, types and measurements

- 2. PRODUCT DESIGN AND DEVELOPMENT: Steps involved in product design and development, considerations of technical, ergonomic, aesthetic, economic and time factors. Use of concurrent engineering in product design and development. Discussion of case studies. Feasibility and locational analysis.
- 3. PLANNING AND FORECASTING: Role of market survey and market research in pre-planning, long medium and short range forecasting, objective and techniques of forecasting, smoothening and revision of forecast
- 4. PRODUCTION PLANNING: Production planning objective and functions, Bill of material, Capacity and man power requirement planning, operation analysis and process planning, long range planning, aggregate planning; Objective, Strategies, graphical and mathematical techniques of aggregate planning, master production scheduling, MRP and MRPII Systems
- 5. PRODUCTION CONTROL: Capacity control and priority control, production control functions; Routing, scheduling, dispatching, expediting and follow up. Techniques of production control in job shop production, batch production and mass production systems,
- 6. MATERIAL MANAGEMENT: Objectives, scope and functions of material management, planning, procurement, storing, ending and inventory control. Purpose of inventory, inventory cost, inventory control systems, Selective inventory control systems, Determination of EOQ, Lead time and reorder point. Methods of physical stock control
- 7. QUALITY CONTROL: Meaning of quality and quality control, quality of design, quality of conformance and quality of performance, functions of quality control. Introduction to statistical quality control-control charts and sampling plans
- 8. MANAGEMENT INFORMATION SYSTEMS: Introduction to MIS, Steps in designing MIS, Role of Computers in MIS
- 9. MAINTENANCE SYSTEMS: Type of maintenance, objective of maintenance, Planned maintenance strategies, preventive maintenance, condition monitoring and total productive maintenance

- 1. Charry, "Production and Operation Management", Tata-McGraw Hill
- 2. J.G. Monks, "Production/Operation Management", Tata-McGraw Hill
- 3. R.N. Nauhria and Rajnish Prakash, "Management of systems", Wheeler Publishing, New Delhi
- 4. Modern Production Management by Elwood Buffa
- 5. E. L. Grant and R.S. Leaven Worth, "Statistical Quality Control", McGraw

DE/ME -2.4 TOTAL QUALITY MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

- 1. Quality and Total Quality Management; Excellence in manufacturing/service, factors of excellence, relevance of TQM.
- 2. Concept and definition of quality; total quality control (TQC) and Total Quality Management (TQM), salient features of TQC and TQM. Total Quality Management Models, benefits of TQM.
- 3. Just-in-time (JIT): Definition: Elements, benefits, equipment layout for JIT system, Kanban system MRP (Material Requirement planning) vs JIT system, Waste elimination, workers involvement through JIT: JIT cause and effect chain, JIT implementation.
- 4. Customer: Satisfaction, data collection and complaint, redressal mechanism.
- 5. Planning Process: Policy development and implementation; plan formulation and implementation.
- 6. Process Management: Factors affecting process management, Quality function development (QFD), and quality assurance system.
- 7. Total Employees Involvement (TEI): Empowering employees: team building; quality circles; reward and Recognition; education and training, Suggestion schemes.
- 8. Problems solving Defining problem; Problem identification and solving process; QC tools.
- 9. Benchmarking definition, concept, process and types of benchmarking.
- 10. Quality Systems: Concept of quality system standards: relevance and origin of ISO 9000; Benefits; Elements of ISO 9001, ISO 9002, ISO 9003.
- 11. Advanced techniques of TQM: Design of experiments: failure mode effect analysis: Taguchi methods

- 1. sunder Raju, "Total Quality Management by", Tata Mcgraw Hill
- 2. M.Zairi, "TQM for engineers", Aditya Books
- 3. J.L. Hradeskym, "Total Quality Management Handbook", MCGraw Hill
- 4. Dalela and Saurabh, "ISO 9000 quality System", standard Publishers
- 5. Dr. Susan Perry, "Total Quality Management", St Lucie Press

DE/ME -2.5 MATERIAL MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

Total Warks: 100

- 1. Introduction Meaning, definition, functions of materials management, Concept of integrated material management, Relationship of material management with other Organizational functions.
- 2. Material Planning & Budgeting: Need for material planning, Factors affecting material planning, Techniques of material planning; Material classification, codification and standardization; Material budgeting meaning and need, techniques of material budgeting.
- 3. Inventory Control: Need and meaning of inventory, types of inventory, functions of inventory control, Inventory costs, Inventory control tool ABC, VED, XYZ and FSN: Economic order Quantity and replenishment of stocks. Physical control of inventory: Fixed order, Two bin and Kardex systems Material requirement planning (MRP-I) Spare parts control for maintenance purposes. Evaluation of inventory control performance. Concept of Just-in-Time(JIT). Use of computers for inventory control
- 4. Purchasing: Purchasing principles, procedures and systems, Functions of purchasing, Make-or-buy decision, Vendor development and vendor rating. Factors affecting purchase decisions, Legal aspects of purchasing, Documentation and procedure for import.
- 5. Storage: Functions and importance of store keeping, types of stores, store accounting and store verification, Legal aspects of store keeping, Management of surplus, scrap and obsolete items. Importance of material handling in store keeping, handling equipment.

Books

- 1. M.M Verma, "Materials Management", S. Chand and Sons
- 2. gopal Krishnan and sundaresan, "Material Management An Integrated Approach ",: Prentice Hall
- 3. Dobbler and Burt, "Purchasing and materials management", Tata McGraw
- 4. Pawan Arora, "Material Management", Global india Publications Ltd
- 5. Rajendra Mishra, "Material Management", Excel Books

DE/PE-2.6 PROJECT MANAGEMENT

Internal Marks: 40 LTP
External Marks: 60 310
Total Marks: 100

1. INTRODUCTION: Concept of a project, types of project, project life cycle phase, project development, project identification and selection, feasibility study.

- 2. PROJECT MANAGEMENT: functions, comparison with traditional management, forms for project management in industry and service sector
- 3. PROJECT PLANNING: Work Breakdown structure, project execution planning, contract planning. Work planning and organization planning, matrix organization, task force organization and totally project based organization systems and procedure planning.
- 4. PROJECT SCHEDULING: Gantt Charts, Network Scheduling, PERT and CPM, Worked examples of PERT and CPM.
- 5. PROJECT MONITORING: Line of Balanced and Pace (Performance and Cost Evaluation) techniques.
- 6. PROJECT CONTROL: Project control process, performance analysis, internal and external project control, approaches to project control, control problems.
- 7. HUMAN ASPECTS OF PROJECT MANAGEMENT: Leadership in project management, the role of project manager, project team, motivation and group cohesiveness.

- 1. S. Choudhary, "Project Management", Tata Mc Graw Hill.
- 2. Nicholas, "Managing Business and Engineering Projects", Prentice Hall.
- 3. Prasanna Chandra, "Project Preperation Appraisal, Budgeting and Implementatipon", Tata McGraw Hill.
- 4. Mike Field, Laurie S. Keller, "Project Management", Thomsan Learning
- 5. Sadhan Choudhury, "Project Management", Tata McGraw Hill

DE/ME-2.7 HUMAN RESOURCE MANAGEMENT

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

 Introduction: Introduction to Human Resource Management and its definition, functions of Human Resource Management & its relation to other managerial functions. Nature, Scope and Importance of Human Resource Management in Industry, Role & position of Personnel function in the organization.

- 2. **Procurement and Placement:** Need for Human Resource Planning; Process of Human Resource Planning; Methods of Recruitment; Psychological tests and interviewing; Meaning and Importance of Placement and Induction, Employment Exchanges (Compulsory Notification of vacancies) Act 1959, The Contract Labour (Regulation & Abolition) Act 1970.
- 3. **Training & Development:** Difference between training and Development; Principles of Training; Employee Development; Promotion-Merit v/s seniority Performance Appraisal, Career Development & Planning.
- 4. **Job analysis & Design**: Job Analysis: Job Description & Job Description, Job Specification.
- 5. **Job Satisfaction:** Job satisfaction and its importance; Motivation, Factors affecting motivation, introduction to Motivation Theory; Workers ' Participation, Quality of work life.
- 6. **The Compensation Function**: Basic concepts in wage administration, company's wage policy, Job Evaluation, Issues in wage administration, Bonus & Incentives, Payment of Wages Act-1936, Minimum Wages Act-1961
- 7. **Integration:** Human Relations and Industrial Relations; Difference between Human Relations and Industrial Relations, Factors required for good Human Relation Policy in Industry; Employee Employer relationship Causes and Effects of Industrial disputes; Employees Grievances & their Redressal, Administration of Discipline, Communication in organization, Absenteeism, Labour Turnover, Changing face of the Indian work force and their environment, Importance of collective Bargaining; Role of trader unions in maintaining cordial Industrial Relations.
- 8. **Maintenance:** Fringe & retirement terminal benefits, administration of welfare amenities, Meaning and Importance of Employee Safety, Accidents-Causes & their Prevention, Safety Previsions under the Factories Act 1948; Welfare of Employees and its Importance, Social security, Family Pension Scheme, ESI act 1948, Workmen's Gratuity Act 1972, Future challenges for Human Resource Management

Recommended Text Books:

1. T.N.Chhabra, "Human Resource Management", Dhanpat Rai & Co.

Recommended Reference Books:

- 1. Lowin B. Flippo, "Principles of personnel Management", Mc Graw-Hill
- 2. R.C. Saxena, "Labour Problems and social welfare", K.Math & Co.
- 3. A Minappa and M. S. Saiyada, "Personnel Management", Tata Mc. Graw-Hill
- 4. C.B. Mamoria, "Personnel Management", Himalaya Publishing House, Bombay
- 5. T.N. Bhagotiwal, "Economics of Labour and Industrial Relations", Sahitya Bhawan Agra

DE/PE-2.8 STATISTICS AND NUMERICAL ANALYSIS

Internal Marks: 40 LTP External Marks: 60 3 1 0

Total Marks: 100

PART A

1. SAMPLING THEORY

Introduction: Normal sampling distributions; Sampling distribution of the means; sampling distribution of the differences of the means; sampling distributions of proportions.

2. TESTS OF SIGNIFICANCE

t-distributions, chi square distributions, F-distributions.

3. REGRESSION AND CORRELATION

Linear regression; correlation, multiple correlation & partial correlation

4. CONFIDENCE LIMITS

Large samples, small samples, error bands in regression

PART B

5. NUMERICAL METHODS

Errors and significant digits, Roots of algebraic equations Bisection method, secant method, Newton Raphson method, Graff's root- squaring method, Iterated synthetic division with quadratic factors method for finding complex roots, solutions of systems of equations (Gauss elimination, Gauss Jordan, and Partition method for linear system of equations, power method for partition, method for linear system of equations, power method for finding eigen values), Forward, backward, central and Divided differences, Newton's formula of interpolation for equal and unequal intervals. Lagrange's interpolation formula, Stirling's and Bessell's formula, Numerical differentiation, Numerical Integration:-Trapezoidal, Simpson's rule and Gaussian integration (only formula applications) Differential equations and their solutions. Numerical methods for ordinary differential equations(Picard method, Taylor series method, Euler's method, Ranga Kutta Method, Predictor-corrector method, Adams-Bashforth method.

BOOKS:

- 1. S.S.Sastry, "Introductory methods of numerical analysis", Prentice Hall of India
- 2. John P. Kennedy Thomas Y, "Statistical methods for Engineers", Crowell Co.
- 3. , B.S. Grewal, "Elementary Numerical Methods" ,Khanna Publication New Delhi.
- 4. Rovert V. hong, "Introduction to Statistics", Macmillan Pub. Co.
- 5 S.D. Conte, & Cari De Boor, "Elementary Numerical Analysis", Mc Graw Hill.

.

DE/PE-2.9 INSPECTION & QUALITY CONTROL

Internal Marks: 40 LTP

External Marks: 60 3 1 0

Total Marks: 100

1. Quality

Concept of Quality, Quality Function, Quality Traits, Quality Characteristics, Quality Management, Quality Principles, Quality Policy, Quality System, Quality Planning, Organizing for Quality, Quality of Design, Quality Circles, Total Quality Management

2. Quality Costs

Quality Costs, Cost of Prevention, Cost of Appraisal, Cost of Internal Failure, Cost of External Failure, Value of Quality, Quality Cost Model, Cost Analysis in Design, Cost Reduction through Quality Improvement.

3. Inspection

Definition of Inspection, Inspection Planning, Measurement Errors, Objectives of Inspection, Floor / Patrol Inspection, Centralized Inspection, Process Inspection, Final Inspection, Difference between Inspection & Quality Control.

4. Quality Assurance

Importance, Total Quality Assurance, Management Principles in Quality Assurance, Forms of Quality Assurance, Evaluation of Quality Assurance, Quality Assurance Programme, Quality Assurance Aspects, Quality Assurance Departments.

5. Quality Control

Total Quality Control, Objectives of Quality Control, Principles of Quality Control, Quality Control Tools, Statistical Quality Control, Control Charts, Construction of Control Charts for Variables (X – R, X - Chart) and Attributes (p, np, C, U Charts), Acceptance Sampling by Attributes, AOQ & OC Curves, Types of Sampling Plans, Analysis of Process Capability, Use of Dodge Roming and Military Standards Sampling Tables.

6. Quality Management System

Quality Management systems- origin of ISO 9000 series (ISO 9001,9002,9003,9004) ISO 9001:2000, clauses of ISO 9001:2000, overview of QS 9000 series

Recommended Books

1. M. Mahajan, "SQC", Dhanpat Rai & Sons

2 Grant E.L. & Leavenworth, R.S., "SQC", McGraw-Hill

3. J.M. Juran, E.N. Gryna Jr., "Quality Planning & Analysis", McGraw-Hill

4. Dr. K.C. Arora, "TQM & ISO 14000", S.K. Kataria & Sons

5. J.M. Juran, "Quality Control Handbook", McGraw-Hill

Group-III

DE/PE-3.0 INDUSTRIAL PACKAGING

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

- **1. Introduction:** Objectives and functions of industrial packaging, different types of industrial packaging, economics of industrial packing.
- 2. Materials For Industrial Packaging: Characteristics of a good packaging material, comparison of materials for industrial packaging, factors affecting the selection of packaging materials, packaging materials for special requirements.
- 3. Industrial Packaging Design: Requirements of a good package design, design considerations for compatibility, separation, enclosure, retention, handling and transportation, package graphic design, package as a means of information & identification, ecological considerations in packaging design selection and use.
- 4. Multiple Function Industrial Packaging: Concept and objectives of multi purpose-packaging, design considerations, cost analysis of multiple functions industrial packaging, Containers, their types, materials, design factors.
- **5. R&D For Industrial Packaging:** Cost reduction techniques, composite material design and development, bio-degradable packaging materials.

Books

- 1. Sharma,"Package Management, Khanna Publishers", New Delhi
- 2. Daniel A Wren, "Management Innovations, Oxford University Press", New York
- 3. Michael L, Tushman, "Managing Package Changes, Oxford University Press", New York
- 4. Packaging Hand Book, Indian Institute of Packaging (India)

DE/PE-3.1 NETWORK ANALYSIS

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. Introduction

Characteristics of effective planning, historical background to network charts, where network charts can be used; the basic essentials; analysis and scheduling; controlling and introducing PERT & CPM into an organisation.

2. Elements of a Network

Activities and events; conventions adopted in drawing networks; the graphical representation of events and activities; identification of activities; fundamental properties of events and activities; errors in logic;

3. Drawing the Network

Drawing the network; interfacing; duration times; duration times under uncertainty; PERT, assigning duration times, numbering the events, listing the events and activities; drawing arrow diagrams.

4. Analyzing the Networks

Calculating the total project time; isolation of the critical path- earliest and latest events, time; total float; free and independent float; negative float; use of different float.

5. Applications

Application of PERT and CPM; calculation of the load; the problem of optimisation, smoothing the load; scheduling manual resource allocation.

NOP Networks

Representation of logic in MOP; representation of time-milestone in MOP; analysis of a MOP network resource allocation; matrix method of expressing and analysis MOP diagrams.

7. Introduction to LOB Networks

Where LOB be used; node times LOB chart; LOB life table control using LOB.

Books:

- 1. Fredric Plotnick, James J. O'Brien, Fredric L. Plotnick, "CPM in Construction Management O'Brien McGraw-Hill
- 2. Archibald & Villaria , "Network Based Management System ",John Wiley
- 3. A Programmed Introduction to PERT Federal Elect.Corp. Prentice Hall
- 4. Wiest & Levy, "A Management Guide to PERT/CPM", Prentice Hall
- 5. Management by Network Bhattacharya Institution of Engrs

DE/PE-3.2 Environmental Degradation of Materials

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

- 1. Introduction to material science and engineering, classifications of engineering materials and introduction to environmental degradation of materials.
- 2. **Aqueous Corrosion**: Nature, Kinetics, passivity and corrosion rate measurements. Classifications of Aqueous corrosion, General corrosion, Galvanic corrosion, Pitting, Crevice corrosion, Erosion-corrosion and corrosion cracking.
- 3. **Aqueous corrosion prevention**: Materials selection, control of environment, Protective coatings, Cathodic protection, Anodic protection and Design improvement.
- 4. **Oxidation:** Introduction, doping effect, internal and catastrophic oxidation, hot corrosion, protective coatings for high temperature applications, corrosion by liquid metal.
- 5. **Hydrogen and Radiation Damage:** Types, theories and preventive methods of hydrogen damage. Radiation induced defect production, Irradiation growth and void swelling, Radiation-enhanced Creep, Irradiation Strengthening and Embrittlement.

Books

- 1. U. K. Chatterjee, S. K. Bose and S. K Roy, "Environmental Degradation of Metals", (Marcel Dekker, 270 Madison Avenue, New Yor).
- 2. K. G. Budinski , "Engineering Materials, Properties and Selection", Prentice-Hall of India, New Delhi
- 3. R. Narayan , "An Introduction to Metallic Corrosion and its Prevention", Oxford & IBH Publishing Co., 66 Janpath, New Delhi
- 4. P. Kofstad, "High Temperature Oxidation of Metals", John Wiley and Sons, New York
- 5. Myer Kutz, "Handbook of *Environmental Degradation* of *Materials*", William Andrew Publishing

DE/PE-3.3 MATERIAL HANDLING & PLANT LAYOUT

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

- 1. Introduction to plant design, types of manufacturing processes. Plant Location, influence of location on layout. Industrial buildings, influence of building on layout. Classical types of layout product layout and practical layout.
- 2. Planning the layout collecting of data for determining and diagramming the flow of material, visualizing possible layout and evaluating alternative layouts. Storage, plant servicing and office layout. Line balancing various operational research techniques for balancing of assembly lines fabrication lines balancing.
- 3. Safety Engg. Safety in various shops, safety in critical storage area, storage explosive material, gases and inflammable liquids.
- 4. Importance of materials handling: Principles of material handling, analysis of material handling problem, operation and flow process charts, flow diagrams.
- 5. Material handling factors: Materials, containers frequency and duration, distance, speed, environment labour and equipment.
- 6. Factory planning and material handling: Plant location factory handling, the layout as key materials handling problem.
- 7. Production Control and materials handling: Types of Production Control, material control. Production planning, production scheduling, production dispatching; and follow up as related to materials handling. Material Handling Equipment: Belt Carrier, chain and cable roller,
- 8. Screw vibrating and reciprocating, pneumatic tubes, load transferring, machines, air operated; and hydraulic devices.
- 9. Cranes, Elevators and Hoists; Industrial Trucks, dump trucks, overhead trackage system. Pallets and containers.

BOOKS;

- 1. J.M. Apple, "Plant Layout and Material handling", Rjonald Press.
- 2. J.M.Moore, "Plant Layout and Design", MacMillan and Co.
- 3. R.Mutter, "Systematic Layout Planning", Cahners Books
- 4. A.B.Chowdhary, "Plant Layout & Material handling", Khanna Publishers.
- 5. Fred e. Meyers, "Material handling & plant layout", prentice hall,

DE/PE-3.4 PRODUCTION PLANNING AND CONTROL

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

- Necessity of planning and control, functions of production control dept. Factors
 determining control procedure. Types of controls. Forecasting: Importance of
 forecasting, fields for forecasting: techniques for forecasting sales, conventional
 and statistical techniques, Regression or Co-relation analysis, short term and
 long term trends in business, forecasting demand for spare parts, stock forecast.
- 2. Planning: Adjustments in forecasting, planning for making and buying. Types of plans: mathematical planning techniques, quantity standards, frequency standards, financial aspects of planning, analysis of machine capacity, planning for labour.
- 3. Production Control:-

Routing, definition, routing procedures including bill of materials, route file, routing for two or more items, standard route charts, recent techniques of routing. Progress reporting and expediting methods.

4. Scheduling:

Master schedule, departmental and shop schedule charts for scheduling. Gnatt Charts- loading and scheduling, Sched-U-Graph. Boards for scheduling.

5. Despatching:

Procedure, types, bulletin boards, plant departmental and shop bulletin boards, material requisition identifications tag. Move ticket, operation tickets, machine control boards. Inspection ticket, Time ticket, communication systems for despatching, follow up.

6. Inventory control:

Importance of inventory control, purchases & inventory control, factors which affect stocks, methods of inventory control. Budgetary and trend, stock taking, physical, perpetual and running inventories. Ordering quantity to order.

7. Store-Room Operations:

Location and layout of store-room bins, pans and boxes used for storing, books and documents used in storing, decentralized stores, inspections function of store.

8. Purchasing:

Planning for purchasing, procurement schedule, purchase requisition, calling tenders, comparative statements, placing order, receiving materials, inspection, entry and payment. Foreign purchases - Imports. Documents and books used in purchasing.

9. Computer Applications:

Application of computers in production planning and control activities. Material Requirement Planning (MRP) , Manufacturing Resource Planning (MRP II) .

Books:

- 1. F. G. Moore, "Production Management", Richard D. Irwin
- 2. John F. Biegel, "Production controls", Prentic Hall
- 3. K. C. Jain & N. L. Aggarwal, "Production Planning Control & Industrial Management." Khanna Publishers
- 4. J. G. Monks, "Production / Operations Management", McGraw-Hill
- 5. Elwood Spencer Buffa, "Modern Production Management", Wiley/Hamilton

DE/ME-3.5 INDUSTRIAL SAFETY AND ENVIORNMENT

Internal Marks: 40 LTP External Marks: 60 310 Total Marks: 100

1. Safety: Measuring and need for safety. Relationship of safety with plant design, equipment design and work environment. Industrial accidents, their nature, types and causes. Assessment of accident costs; prevention of accidents. Industrial hazards, Hazards identification techniques, accident investigation, reporting and analysis.

- 2. Planning for safety: Definition, purpose, nature scope and procedure. Range of planning, varsity of plans. Policy formulation and implementation safety policies. Safety measures in a manufacturing organization, safety and economics, safety and productivity. Employees participation in safety. Safety standards and legislation.
- Meaning of environment and need for environmental control. Environmental factors in industry. Effect of temperature, Illumination, humidity noise and vibrations on human body and mind. Measurement and mitigation of physical and mental fatigue. Basics of environmental design for improved efficiency and accuracy at work
- 4. Ventilation and heat control: Purpose of ventilation. Physiology of heat regulation. Thermal environment and its measurement. Thermal comfort. Indices of heat stress. Thermal limits for comfort, efficiency and freedom from health risk. Natural ventilation. Mechanical ventilation. Air conditioning process ventilation Control of radiant heat, dilution ventilation. Local relief.
- 5. Industrial Lighting: Purpose of lighting, benefits of good illumination, Phenomenon of lighting and safety, Lighting and the work source and types of artificial lighting. Principles of good illumination. Recommended optimum standards of illumination. Design of lighting installation. Maintenance standard relating to lighting and colour.
- 6. Noise and Vibrations: Continuous and impulse noise. The effect of noise on man. Noise measurement and evaluation of noise. Noise isolation. Noise absorption techniques. Silencers. Vibrations; Effect, Measurement and control measures. Environment standard; Introduction to ISO 14000; Environmental standard for representative industries.

- 1., Rjossamo, "Air Pollution Control", McGraw Hill. .
- 2. Joselin, "Ventilation", Edward Arnold.
- 3. Beranek, "Noise Reduction", McGraw Hill.
- 4. DC Reamer; R, "Modern Safety & Health Technology", Wiley.
- 5. Heinrich, H.W., "Industrial Accident prevention", McGraw Hill.

DE/ME-3.6 ENTREPRENEURSHIP

Internal Marks: 40 LTP External Marks: 60 310

Total Marks: 100

1. CONCEPT OF LENTREPRENEURSHIP:

Entrepreneurship and small-scale industry, need for promotion of entrepreneurship, entrepreneurship development programmes (EDP), personality characteristics of entrepreneur.

2. IDENTIFICATION OF :INVESTMENT OPPORTUNITIES

Governmental regulatory framework, industrial policy, industrial development and regulation act, regulation of foreign collaboration and investment, foreign exchange regulation act, incentives for export oriented units, incentives for units in industrially backward areas, incentives for small scale industry, government assistance to SSI, how to start and SSI, list of items reserved for SSI, Scouting for project ideas, preliminary screening, project identification for an existing company.

3. MARKET AND DEMAND ANALYSIS:

Information required for market and demand analysis, market survey, demand forecasting, uncertainties demand forecasting.

4. COST OF PROJECT AND MEANS OF FINANCING:

Cost of project, means of financing, planning the capital structure of a new company, term loan financial institutions, cost of production.

5. FINANCIAL MANAGEMENT:

Concept and definition of financial management types of capital, of finance, reserve and surplus, concepts and liabilities, profit and loss statement balance sheet, depreciation, methods of calculating depreciation break even analysis and

- 1 A. Saxena, "Entrepreneurship", Mayur Enterprises
- 2. Project Preparation, Appraisal Budgeting and Implementation, Prasanna chandra, TMH.
- 3. Wojciech W Gasparski, "Entrepreneurship", Transaction Published, New Brunswick
- 4. Donald F. Kuratko, "Entrepreneurship", south western cengage learning
- 5. D.D. Sharma, J.S. Saini, "Entrepreneurship Development in Hosiery Industry", northern book centre

DE/PE-3.7 MODELING AND SIMULATION

Internal Marks: 40 LTP External

Marks: 60 310

Total Marks: 100

1. Modeling

Need for system modeling, systems approach to modeling, open and feed back systems, combination of simple feed back systems, feed back time lag effects, feed back and managerial systems, Principle of analytical modeling, kinds of analytical methods, measures of effectiveness, cost analysis of large systems

2. Simulation

Monte Carlo simulation, generation of stochastic variates, continuous and discrete probability distributions, application of Monte Carlo methods for production systems, computer simulation models, Macro Dynamic models, examples from business and industry, design of management game, Simulation languages SIMULA, SIMSCRIPT, GPSS etc. Statistical output analysis

 Analog computer simulation; basic analog computer components and operations; amplitude and time scaling; solution of linear and non-linear partial differential equations, formulation of model for a dynamic system and its simulation on analog computer

List of Recommended Books

- 1. Deo Narsingh, "System Simulation with Digital Computer", PHI
- 2. Gordon, "System Simulation", PHI
- 3. Jackson A.S., "Analog Computation", Mcgraw hill
- 4. Navlor T.H., "Computer Simulation Techniques", John wiley
- 5. Buffa, "Modern Production Management", Wiley