SUBJECT CODE: PCPE-101 SUBJECT NAME: STRENGTH OF MATERIALS

Programme: B.Tech. (PE)	L: 3 T: 0 P: 0
Semester: 3	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Compulsory

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

U	in comp	iction of the course, the student will have the ability to:
	CO#.	Course Outcomes (Cos)

LU#.	Course Outcomes (Cos)	
1	execute the fundamental concepts of stress, strain and elastic behaviour of materials to analyse	
	structural members subjected to tension, compression and torsion.	
2	analyze the bending stress on different types of sections.	
3	formulate appropriate theoretical basis for the analysis of combined axial and bending stresses.	
4	understand the behaviour of column and struts under axial loading.	
5	demonstrate the use of critical thinking and problem solving techniques as applied to structural	
	systems.	
6	predict the deflection in beams of varying sections and different materials.	

S. No.	Title	Content details	Credit Hrs.
Unit 1	Cimula	(Part A)	<u>піз.</u> 8
Unit 1	Simple	Concept of stress and strain; St. Venant's principle, stress and strain diagram,	8
	Stresses	Hooke's law, Young's modulus, Poisson ratio, stress at a point, stress and strains	
	and Stucius	in bars subjected to axial loading. Modulus of elasticity, stress produced in	
	Strains	compound bars subject to axial loading. Temperature stress and strain	
		calculations due to applications of axial loads and variation of temperature in	
		single and compound bars. Compound stress and strains, the two dimensional	
		system; stress at a point on a plane, principal stresses and principal planes;	
		Mohr's circle of stress; ellipse of stress and their applications. Generalized	
		Hook's Law, principal stresses related to principal strains.	
Unit 2	Bending	S.F and B.M definitions. BM and SF diagrams for cantilevers, simply supported	8
	Moment	beams with or without overhangs and calculation of maximum BM and SF and	
	and Shear	the point of contra flexure under the following loads: Concentrated loads,	
	Force	Uniformity distributed loads over the whole span or part of span, Combination	
	Diagrams	of concentrated loads (two or three) and uniformly distributed loads,	
		Uniformity varying loads & Application of moments Relation between rate of	
		loading, shear force and bending moment	
Unit 3	Theory of	Stresses in beams due to bending, assumptions in the simple bending theory,	4
	Bending	derivation of formula: its application to beams of rectangular, circular channel,	
		I and T-sections; combined direct and bending stresses in aforementioned	
		section, composite / flitched beams.	
		Part B	
Unit 4	Torsion	Derivation of torsion equation and its assumptions. Applications of the	4
		equation to the hollow and solid circular shafts, torsional rigidity, combined	
		torsion and bending of circular shafts principal stress and maximum shear	
		stresses under combined loading of bending and torsion.	
Unit 5	Thin	Derivation of formulae and calculation of hoop stress, longitudinal stress in a	3
	Cylinders	cylinder, effects of joints, change in diameter, length and internal volume;	
	& Spheres	principal stresses in sphere and change in diameter and internal volume	
Unit 6	Columns	Columns and failure of columns: Euler's formulas; Rankine-Gordon's formula,	3
	and Struts	Johnson's empirical formula for axially loaded columns and their applications.	
Unit 7	Slope and	Relationship between moment, slope and deflection, Moment area method of	6
	Deflection	integration; Macaulay's method: Use of all these methods to calculate slope and	

deflection for the Cantilevers, Simply supported beams with or without
overhang, & under concentrated loads, uniformly distributed loads or
combination of concentrated and uniformly distributed loads

- 1. EP Popov Mechanics of Materials-SI Version 2nd Edition Prentice Hall Indi
- 2. D.H Shames Introduction to Solid Mechanics Prentice Hall Inc.
- 3. D.S. Bedi Strength of Materials S Chand Publishers
- 4. R. S. Lehri and A.S. Lehri Strength of Materials S.K Kataria and Sons.
- 5. Sadhu Singh Strength of Materials Khanna Publishers
- 6. R. S. Khurmi Strength of Materials S. Chand& Co.

SUBJECT CODE: PCPE-102 SUBJECT NAME: MACHINE DRAWING

Programme: B.Tech. (PE)	L: 2 T: 0 P: 4
Semester: 3	Teaching Hours: 72
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 60	Duration of End Semester Exam(ESE): 4hr
Total Marks: 100	Status: Compulsory

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes			
1	read, draw and interpret the machine drawings and related parameters.			
2	demonstrate and monitor the manufacturing of components at shop floor level as per the information in			
	the given drawing.			
3	explain the concept of limits, fits and tolerances in various mating parts.			
4	visualize and generate different views of couplings and joints.			
5	visualize and generate different views of a component with detailed internal information in the assembly			
	and disassembly.			
6	draw the various components on the computer aided drafting software's.			
Joto				

Note:

- **1.** Drawing Sheet Size Should be A2
- 2. Drawing Practice is to be done as per IS code SP 46: 2003.
- **3.** First angle projection to be used.
- 4. Drawings should contain Bill of Materials and should illustrate surface finish.

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Requirements of machine drawing, Sectioning and conventional representation, Dimensioning, concept of limits, fits & tolerances and their representation, Machining Symbols, introduction and Familiarization of Code SP 46:2003	10
Unit 2	Fasteners	Various types of screw threads, types of nuts and bolts, screwed fasteners, welding joints and riveted joints.	10
	·	Part B	
Unit 3	Drawing of pipe joints, clutches, keys and couplings	keys, spline shafts, Knuckle and cotter joints, Couplings: Solid or Rigid Coupling, Protected Type Flange coupling, Pin type flexible coupling, muff coupling, universal coupling, cone friction clutch, Single Plate friction clutch, Pipe and Pipe Fittings: Flanged joints, Spigot and socket joint, Union joint and Hydraulic joint.	16

Unit 4		Plummer Block, Foot Step Bearing, Swivel Bearing, connecting rod, Screw Jack, Tail Stock, Drill Press Vice	28
Unit 5	Computer Aided Drawing	 2-D drawing of various views of Screw Thread on AutoCAD/Solid works/Pro E 3-D drawing of various views of shaft joints and pipe joints on Solid works/Pro E 	8

- 1. N. D. Bhatt "Machine Drawing", Charotar Publishers India.
- 2. P.S. Gill "Machine Drawing", S. K. Kataria & Sons.
- 3. Pohit, G., "Machine Drawing with AutoCAD", Pearson Education Asia
- 4. French, T. E. and Vierck, C. J., "Graphic Science and Design", McGraw Hill
- 5. Dhawan, R.K., "Machine Drawing", S. Chand & Company Limited

Reference Books:

- 1. Narayana, K.L., Kannaiah P. and Reddy, K.V., "Machine Drawing", New Age International Publishers
- 2. N. Sidheshwar, Shastry , Kanhaiah, "Machine Drawing", Tata McGraw Hill
- 3. Sadhu Singh, P. L. Shah "Fundamentals of Machine Drawing", PHI Learning Pvt. Ltd

SUBJECT CODE: PCPE-103 SUBJECT NAME: THERMAL ENGINEERING

SUDJECT NAME. THERMAL ENGINEERING		
Programme: B.Tech. (PE)	L: 3 T: 0 P: 0	
Semester: 3	Teaching Hours: 36	
Theory/Practical: Theory	Credits: 3	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Compulsory	

Additional Material Allowed in ESE: Scientific Calculator & Psychometric Charts and Steam Tables On completion of the course, the student will have the ability to:

CO #	Course Outcomes(CO)	
1	identify, track and solve various combustion problems.	
2	recognize and understand the working of devices involved in thermal plants	
3	evaluate theoretically the performance of various components involved in steam power plants and	
	reciprocating compression machines.	
4	design some components working on non-conventional power sources	
5	design machines based on heat transfer phenomenon.	
6	understand and interpret the working of various engines and generators.	

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Thermodynamics	Zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; Properties of Steam and its formation at constant pressure: wet, dry, saturated and super-heated steam; Sensible heat (enthalpy), latent heat and total heat (enthalpy) of steam. Entropy and internal energy of steam.	7
Unit 2	Heat Transfer	Modes of Heat Transfer, Steady and unsteady heat transfer, Fourier law of conduction and thermal conductivity, Conduction of heat through a slab, a hollow cylinder and a hollow sphere, Natural and forced convection, dimensionless parameters in free and forced convection, convective heat transfer coefficient, Combined conduction and convective heat transfer, Critical thickness of insulation, Fin and its application, Types of fins, Analysis of heat transfer through a rectangular fin, Introduction to radiation, total emissive power, monochromatic	8

	1		
		emissive power, emissivity, Absorptivity, reflectivity and transmissivity, Black body, Opaque Body, White body and Gray body, Stefan Boltzmann's Law, Kirchhoff's law, Plank's law, Wien's displacement law, Intensity of radiation and Lambert's cosine law. Heat Exchangers: Introduction, classification of heat exchanger, Heat exchanger analysis – Logarithmic mean temperature difference (LMTD) for parallel flow and counter flow.	
Unit 3	I.C Engines, Gas Turbines & Boilers	Classifications of I.C. engines, working of two and four stroke petrol and diesel engines. Measurement of BHP, IHP, mechanical and thermal efficiency, Specific fuel consumption. Elementary idea of combustion phenomenon in S.I. and C.I. engines. Description of simple carburetor, fuel pump and injector, Magneto and battery ignition system. Testing of I.C. Engines. Description of open cycle Gas turbines, comparison of I.C. Engines and gas turbines, Steam turbine comparison of I.C. Engines, Gas Turbine and Steam Turbine with their applications. Applications of Boilers, Fire tube and water tube boilers, Description of Lancashire, Cochran, Locomotive, Babcock Wilcox Boiler, Boiler mountings and accessories.	7
		Part B	
Unit 4	Non- Conventional Power Generation	Introduction, advantages of non-conventional energy sources, Wind power plants – multiple blade type, savonius type and darrieus type, Wind electric generation power plant – horizontal and vertical axis wind machines. Tidal power plant – classification and operation, single basin and double basin, solar power plants – flat plate collector, concentrating collector, solar pond, geothermal power plants. Biogas plants.	6
Unit 5	Refrigeration and Air Conditioning	Description of simple Vapour compression and Vapor absorption cycles, relative merits and demerits, Properties of refrigerants, Types & Applications of Air Conditioning, Elementary idea of ozone friendly refrigerants, Concept of Psychrometry, Definitions of psychometric terms Psychrometric charts and their usage.	8

- 1. V.P. Vasandani and D.S. Kumar "Thermal Engineering", Treatise on Heat Engineering Metropolitan
- 2. John R. Howell & Richrd O Buckius "Fundamentals of Engineering Thermodynamics" McGraw Hill
- 3. C.P. Arora "Refrigeration & Air Condition", Tata McGraw Hill
- 4. Domkundwar "Thermal Engineering", Dhanpat Rai & Co.
- 5. R. K. Rajput "Thermal Engineering", S. Chand & Co.

Reference Books:

- 1. J. S. Rajadurai , "Thermodynamics and Thermal Engineering" New Age Int.(P) Ltd. Publishers,.
- 2. G. Rogers and Y. Mayhew, "Engineering Thermodynamics", Pearson Education Canada,

SUBJECT CODE: HSMPE-101 SUBJECT NAME: OPERATION MANAGEMENT

Programme: B.Tech. (PE)	L: 3 T: 0 P: 0
Semester: 3	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Compulsory
Additional Material Allowed in E	SE: Scientific Calculator
On completion of the course, the	student will have the ability to:

CO#	Course Outcomes(CO)	
1	apply knowledge of mathematics, science, and engineering	
2	design and conduct experiments, as well as to analyze and interpret data.	

3	design a system, process to meet desired needs within realistic constraints.
4	function on multidisciplinary teams.
5	design and maintain the systems
6	plan, control and execute the different duties in an organization

Detailed Contents:

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Overview of Production System, Objectives of Operation Management, Scope of Operations Management, Operations Management Frame work, Relationship of operations with other Functional areas, Manufacturing Vs Service sector, Operations Decision making, productivity, Introduction to MIS, Steps in designing MIS	3
Unit 2	Product Design And Development	Steps involved in product design and development, considerations of technical, ergonomic, aesthetic, economic and time factors. Use of concurrent engineering in product design and development. Discussion of case studies. Feasibility and locational analysis.	5
Unit 3	Forecasting	Role of market survey and market research in preplanning, long medium and short range forecasting, objective and techniques of forecasting, smoothening and revision of forecast, Patterns of a time series Forecasting techniques Forecasting a time series with trend and seasonal component.	5
Unit 4	Production Planning	Production planning objective and functions, Bill of material, operation analysis and process planning, long range planning, aggregate planning; Objective, Strategies, graphical and mathematical techniques of aggregate planning, master production scheduling, MRP and MRPII Systems, Scheduling	6
Unit 5	Production Control	Production control functions; Routing, scheduling, dispatching, expediting and follow up. Techniques of production control in job shop production, batch production and mass production systems Part B	4
Unit 6	Capacity Planning	Measures of capacity, Factors affecting capacity, Capacity planning, Systematic approach to capacity planning, Long-term and short-term capacity decisions, Tools for capacity planning, Capacity Requirement planning- Business process outsourcing.	5
Unit 7	Material Management	Objectives, scope and functions of material management, planning, procurement, storing, ending and inventory control. Purpose of inventory, inventory cost, inventory control systems, Selective inventory control systems, Determination of EOQ, Lead time and reorder point. Methods of physical stock control.	5
Unit 8	Quality Control	Meaning of quality and quality control, quality of design, quality of conformance and quality of performance, functions of quality control. Introduction to statistical quality control-control charts and sampling plans.	4
Unit 9 xt Books	Maintenance Systems	Type of maintenance, objective of maintenance, planned maintenance strategies, preventive maintenance, condition monitoring and total productive maintenance.	3

Text Books:

- 1. Charry, "Production and Operation Management", Tata-McGraw Hill
- 2. J.G. Monks, "Production/Operation Management", Tata-McGraw Hill
- 3. R.N. Nauhria & Rajnish Prakash, "Management of Systems", Wheeler Publishing, Delhi
- 4. E. L. Grant and R.S. Leaven Worth, "Statistical Quality Control", McGraw Hill

Reference Books:

- 1. Buffa and Sarin "Modern Production/Operations Management", John Wiley & Sons.
- 2. Russell & Taylor "Operations Management", PHI.

SUBJECT CODE: BSPE-101 SUBJECT NAME: MATERIAL SCIENCE

Programme: B.Tech. (PE)	L: 3 T: 0 P: 0
Semester: 3	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems:20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Compulsory

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

-			 	 			
	CO#				Cou	rse	Outco

CO #	Course Outcomes(CO)		
1	apply knowledge of Crystal growth, Crystal structure, re-crystallization in various manufacturing		
	processes.		
2	understand the reasons of deformations in crystals.		
3	acknowledge the various applications of different types of materials.		
4	determine the crystal structure of simple crystals.		
5	recognize the crystal defects during manufacturing and their respective remedies.		

6 apply knowledge about the various material properties for different engineering applications.

Detail Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Crystal	Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids:	4
	Structure	Point, line, interfacial and volume defects; dislocation strengthening	
		mechanisms and slip systems, critically resolved shear stress.	
Unit 2	Alloys	Alloys, substitutional and interstitial solid solutions- Phase diagrams:	6
		Interpretation of binary phase diagrams and microstructure	
		development; eutectic, peritectic, peritectoid and monotectic reactions.	
		Iron Iron-carbide phase diagram and microstructural aspects of	
		ledeburite, austenite, ferrite and cementite, cast iron.	
Unit 3	Alloying of steel	Properties of stainless steel and tool steels, maraging steels- cast irons;	5
		grey, white, malleable and spheroidal cast irons- copper and copper	
		alloys; brass, bronze and cupro-nickel; Aluminum and Al-Cu – Mg	
		alloys- Nickel based super alloys and Titanium alloys	
Unit 4	Electrical	Electrical conduction. Semi conductivity. Super conductivity. Electrical	5
	Properties	conduction in ionic ceramics and in polymers. Dielectric behavior.	
		Ferroelectricity. Piezoelectricity	
		Part B	
Unit 5	Magnetic	Diamagnetism and paramagnetism. Ferromagnetism. Anti-	4
	Properties	Ferromagnetism and Ferrimagnetism. Influence of temperature on	
		magnetic behavior. Domains and Hysteresis	
Unit 6	Optical	Optical properties of metals. Optical properties of nonmetals.	3
	Properties	Application of optical phenomena	
Unit 7	Thermal	Heat capacity. Thermal expansion. Thermal conductivity. Thermal	4
onic /	Property	stresses	Т
	Toperty		
Unit 8	Applications	Types and applications of ceramics. Fabrication and processing of	5
	and Processing	ceramics, Mechanical behavior of polymers. Mechanisms of	
	of Ceramics,	deformation and strengthening of polymers. Crystallization, melting	
	Polymers &	and glass transition. Polymer types. Polymer synthesis and processing,	
	Composites	Particle reinforced composites. Fiber reinforced composites. Structural	

Text Books:

1. W. D. Callister, "Materials Science and Engineering-An Introduction", Wiley India.

- 2. Kenneth G. Budinski & Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited,
- 3. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Pvt. Ltd.
- 4. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, India

Recommended Books:

- 1. Allen, S. M., and E. L. Thomas. "The Structure of Materials" . J. Wiley & Sons New York.
- 2. Rohrer, G. "Structure and Bonding in Crystalline Materials". Cambridge University Press, New York.
- 3. Nye, J. F. "Physical Properties of Crystals: Their Representation by Tensors and Matrices", Oxford University Press, New York.
- 4. Bransden, B. H., and C. J. Joachain. "Physics of Atoms and Molecules", Prentice Hall New Jersey.

SUBJECT CODE: ESPE-101 SUBJECT NAME: INDUSTRIAL ENGINEERING

Programme: B.Tech. (PE)	L: 3 T: 0 P: 0
Semester: 3	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems:20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Compulsory

Additional Material Allowed in ESE: Scientific Calculator

Ur	on completion of the course, the student will have the ability to:				
	CO #	Course Outcomes(CO)			
	1	An ability to apply knowledge of mathematics, science, and engineering			
	2	An ability to design and conduct analyze and interpret data.			
	3	An ability to plan and design layouts of an organization with an eye on enhancements			
	4	An ability to function on multidisciplinary teams.			
	5 An ability evaluate the economic aspects of an organization.				
	6	An ability to design and implement the work and jobs in an organization.			

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Definition and scope of industrial engineering, role of an Industrial engineer in industry, functions of industrial engineer, qualities of an industrial engineer	3
Unit 2	Plant Layout & Material Handling	Introduction and different types of layouts, Site Selection, Types of Buildings, development of plant layout, types of material handling equipment, relationship of material handling with plant layouts.	4
Unit 3	Work Study- Method Study	Introduction to work study, objectives and procedure for methods analysis, recording techniques, micro motion and macro motion Study; Principles of motion economy, normal work areas and workplace design.	5
Unit 4	Work Study- Work Measurement	Objectives, work measurement techniques – time study, work sampling, predetermined motion time standards (PMTS), Determination of time standards, Observed Time, Basic Time, Normal Time, Rating Factors, allowances, Standard Time.	5
		Part B	-
Unit 5	Work Design	Concepts of job enlargements, job enrichment and job rotation, effective job design considering technological and behavioral factors, Scientific Management, Re Engineering, Gillworth Contribution towards work system design.	5
Unit 6	Ergonomics	Introduction to ergonomics consideration in designing Man Machine systems with special reference to design of displays and controls.	6

		Anthropometry, Introduction to Human Metabolism, Application of Ergonomics.	
Unit 7	Engineering Economics	Introduction to Economics, Flow of Economics, Law of supply and demand, concept of Engineering Economics, Elements of Costs,	6
		Depreciation, Maintenance and Replacement Problems	
Unit 8	Advancement in	Introduction to Agile Manufacturing, Supply Chain Management, Value	5
	Industrial	Engineering, TPM, JIT, JOT, Enterprise Resource Planning, 5S, SMED,	
	Engineering	Kaizen, Root Couse Analysis, Why-Why Analysis & Green	
		Manufacturing	

- 1. Martand Telsang "Industrial Engineering and Production Management", S. Chand
- 2. Hicks, "Industrial Engg. And Management", Tata McGraw Hill.
- 3. Suresh Dalela and Saurabh, "Work Study and Ergonomics", Standard Publishers.
- 4. R. Bernes, "Motion and Time Study", John Wiley and sons.
- 5. D. J. Oborne, "Ergonomics at work", John Wiley and sons.
- 6. Dwivedi, D.N., Managerial Economics, Vikas Publishing House Pvt. Ltd.
- 7. Chan S. Park "Contemporary Engineering Economics" Prentice Hall of India

Reference Books:

- 1. Donald G. Newman and Jerome P. Lavelle "Engineering Economics and Analysis" Engg. Press
- 2. Principles of Economics: P.N. Chopra (Kalyani Publishers).
- 3. O.P. Khana "Industrial Engineering and Management", Dhanpat Rai Publications
- 4. Salvatore, D. and Srivastav, R., Managerial Economics: Principles and Worldwide Applications, Oxford University Press.
- 5. Work study by ILO

SUBJECT CODE: LPCPE-101

SUBJECT NAME: STRENGTH OF MATERIAL LABORATORY

Programme: B.Tech. (PE)	L: 0 T: 0 P: 2
Semester: 3	Teaching Hours: 24
Theory/Practical: Practical	Credits: 1
Internal Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr
Total Marks: 50	Status: Compulsory

On Completion of the course, the student will have the ability to:

CO #	Course Outcomes(CO)	
1	Perform tensile and compression test.	
2	Knowledge of bending test on beam.	
3	Perform torsion test and determine modulus of rigidity.	
4	Understand study and compute various hardness test.	
5	Perform shear test and determine ultimate shear strength.	
6	Perform impact test and determine impact strength.	

Sr. No.	Experiment
1	To perform tensile test in ductile and brittle materials and to draw stress-strain curve and to
	determine various mechanical properties.
2	To perform compression test on C.I. and to determine ultimate compressive strength.
3	To perform shear test on different materials and determine ultimate shear strength.
4	To perform any one hardness test (Rockwell, Brinell & Vicker's test) and determine hardness of
	materials.
5	To perform impact test to determine impact strength.
6	To perform torsion test and to determine various mechanical properties.

7	Study of performance of Fatigue & Creep tests.
8	To perform bending test on beam (wooden or any other material) and to determine the Young's
	modulus and Modulus of rupture.
9	To perform Torsion test and close coiled helical spring in tension and compression and to determine
	modulus of rigidity/stiffness.
10	Determination of Bucking loads of long columns with different end conditions.
11	One Minor Project based on the syllabus Laboratory of Strength of Material Subject

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: LPCPE-102 SUBJECT NAME: THERMAL ENGINEERING LABORATORY

Programme: B.Tech. (PE)	L: 0 T: 0 P: 2
Semester: 3	Teaching Hours:24
Theory/Practical: Practical	Credits: 1
Internal Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr
Total Marks: 50	Status: Compulsory

On Completion of the course, the student will have the ability to:

CO #	Course Outcomes(CO)	
1	An ability to identify, track various combustion problems in I.C. engines.	
2	An ability to recognize and understand the working of devices operating on the principles of Heat	
	Transfer.	
3	An ability to evaluate practically the performance of various components involved in steam power	
	plants and reciprocating compression machines.	
4	An ability to design some components working on non-conventional power sources	
5	An ability determine the C.O.P. of various machines like refrigerator, air conditioner etc.	
6	An ability to understand and interpret the working of various industrial boilers	

Sr. No.	Experiment	
1	Determination of coefficient of heat transfer for free/forced convection from the surface of a	
	cylinder/plate when kept along the direction of flow.	
2	Determination heat transfer coefficient of radiation and hence find the Stefan Boltzman's constant	
	using two plates/two cylinders of same size by making one of the plates/cylinders as a black body.	
3	Trial of single Cylinder, four stroke diesel engine to calculate BHP, IHP, and air fuel ratio thermal	
	efficiency.	
4	Morse test on multi cylinder petrol engine.	
5	To find C.O.P of domestic refrigerator.	
6	To find COP of an Air conditioner.	
7	To find COP of water cooler.	
8	Study of various types of boilers Models.	
9	One Minor Project based on the syllabus Laboratory of Thermal Engineering Subject	

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: PCPE-104 SUBJECT NAME: DESIGN OF MACHINE ELEMENTS

		SUBJECT NAME: DESIGN OF MACHINE ELEMENTS	
Programme: B.Tech. (PE)		L: 4 T: 0 P: 0	
Semester: 4		Teaching Hours: 48	
Theory/Practical: Theory		Credits: 4	
Intern	nal Marks: 40	Percentage of Numerical/Design/Programming Problems: 70%	
Exterr	nal Marks: 60	Duration of End Semester Exam(ESE): 4hr	
Total	Marks: 100	Status: Compulsory	
Additio	onal Material Allowed i	n ESE: Scientific Calculator & Design Data Hand Book	
	pletion of the course, t	the student will have the ability to:	
CO #		Course Outcomes(CO)	
1		flow chart for existing and new conceptual design.	
2	deal with the machine	design problems in technical way using design principles and procedures.	
3	understand different st	tresses and strains (loading conditions), and also effect of these stresses and	d strains
	on different machine n		
4	-	f designing various types of joints and other important machine eleme	nts in a
	technical way.		
5		recommend/apply appropriate adjustments in the existing design.	
6	manage Design of mac	hine components like: springs, flywheel, clutches and brakes etc. according	; to
	various necessities in t	he business/Industry.	
Detaile	ed Contents:		
S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Scope and meaning of machine design. Sources of design data. Design	4
		considerations from economics, manufacturing, assembly, aesthetics	
		and ergonomics aspects. Design Process, Selection of Materials, Limits	
		and Fits.	
Unit 2	Fasteners	Screwed Joints, Design of Bolted joints, Bolted Joints under eccentric	6
		Loading. Welded Joints: -Design of Fillet Welded Joints, Butt Joints, Un-	
		symmetric Welded sections, eccentrically loaded welded joints. Riveted	
		Joints: - Design of Lap Joints, Butt Joints, Diamond Riveting, Eccentrically	
		loaded riveted joints. Design of Cotter and Knuckle Joints: - Socket and	
		Spigot, Gib and Cotter, Knuckle joint	
Unit 3	Shafts	Design of shafts under different types of loading conditions.	4
Unit 4	T		A
1 limit A		Design of Dalt during (Γ let W) and C	
Unit 4		Design of Belt drives (Flat, V) and Spur gear drive	4
Unit 4	Drives	Design of Belt drives (Flat, V) and Spur gear drive	4
			4
	Drives	Part B	
Unit 5	Drives Keys &	Part B Design of rectangular and square keys, muff coupling, split muff	4
	Drives	Part B	
	Drives Keys & Couplings	Part B Design of rectangular and square keys, muff coupling, split muff coupling, flange coupling, bushed-pin type flexible coupling.	
Unit 5	Drives Keys & Couplings	Part B Design of rectangular and square keys, muff coupling, split muff coupling, flange coupling, bushed-pin type flexible coupling.	5

		1 5 7	
Unit 7	Levers	Design of straight levers, Bell -Crank levers, foot levers, hand levers.	4
Unit 8	Brakes and Clutches	Design of friction plate and cone clutches, band brake band and block brakes	4

Text Books:

 J.E. Shigley "Mechanical Engineering Design", McGraw-Hill Education (India) Pvt Ltd Sadhu Singh "Machine Design", Khanna Publishers

- 2. R. S. Khurmi & J. K. Gupta "A text book of machine design", S Chand & Co.
- 3. D. K. Aggarwal & P. C .Sharma "Machine Design" by S.K Kataria and Sons

Design Data Books

- 1. Design Data Book, PSG College of Engineering and Technology, Coimbatore,
- 2. Design Data Handbook for Mechanical Engineers, Mahadevan, K. and Reddy Balveera, K., CBS Publishers and Distributors Pvt. Ltd.

Reference Books:

- 1. James G. Skakoon "The Elements of Mechanical Design", ASME Press New York
- 2. David G. Ullman" The Mechaqnical Design Proess" Mc-Graw Hill Publications
- 3. Krishnamurthi, "Design and Manufacturing", S.K. Kataria and Sons

SUBJECT CODE: PCPE-105 SUBJECT NAME: FLUID MECHANICS AND MACHINERY

Programme: B.Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 4	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Compulsory	
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:		

011 00111	in compretion of the course, the student will have the ability to:		
CO#	Course Outcomes(CO)		
1	solve problems relating to kinematic and dynamics of fluid flow.		
2	analyze the fluid dynamic conditions and in assessing the equations involved on the basis of dimensional		
	homogeneity.		
3	evaluate theoretically the performance of various components involved in pumps and turbines.		
4	check the homogeneity of various equations involved in fluid mechanics.		
5	understand the concept of fluid machinery concepts.		
6	solve various problems arising in fluid working machinery.		

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Fluids & Their	Concept of fluid; Ideal & Real fluids; significance of fluid Mechanics;	5
	Properties	continuity concept of fluid; density, specific weight, viscosity & its	
		dependence on temperature; vapor pressure & cavitations;	
		compressibility & bulk modulus, Newtonian & non Newtonian fluids.	
Unit 2	Fluid statics,	Concept of pressure, Pascal's Law, Buoyancy & floatation, stability of	8
	kinematics &	floating & submerged bodies. Concept of Metacentre. Classification of	
	dynamics	fluid flows; streamline, path line & streakline; continuity equation in	
		Cartesian coordinates. Euler's equation; Bernoulli's Equation & steady	
		flow energy equation, Impulse momentum equation.	
Unit 3	Dimensional	Need of dimensional analysis; Fundamental & derived units &	5
	Analysis	dimensions; dimensional homogeneity; Rayleigh's & Buckingham's Pi	
		method for dimensional Analysis. Model studies, Dimensionless	
		numbers & their significance.	
		Part B	
Unit 4	Laminar &	Flow in circular cross section pipes; Turbulent &flow losses in pipes;	6
	Turbulent flows	Darcy EquationManometers; pitot tubes; venture meter & Orifice	
	& their	meter; rotameter.	
	measurements		
Unit 5	Fluid machinery	Impulse momentum principle; Jet impingement on stationary & moving	5
	concepts	flat plates and on stationary or moving vanes with jet striking at center	

		& tangentially at one end of vane, calculations for force exerted, work done & efficiency of jet.	
Unit 6	Turbines and Pumps	Components parts & operation of Pelton, Franics & Kaplan Turbines Draft Tube- Its function &types. Component parts & operation of centrifugal & Reciprocating pumps: Suction, delivery & manometric heads of centrifugal pumps; priming & priming devices. Multistage pumps, series & parallel arrangements. Pressure variation due to piston acceleration & acceleration effects &air vessel. (No Numerical).	

- 1. D.S. Kumar "Fluid Mechanics & fluid power Engineering", Metropolitan Publishers
- 2. Fluid Mechanics by R. K. Bansal, (Laxmi Publications)
- 3. Fluid Mechanics by Potter & Wiggert (Cengage Learning) 4
- 4. Fluid Mechanics by A.K Mohanty (PHI Learning Pvt. Ltd.) 5.
- 5. Fluid Mechanics and Hydraulic Machines by R. K. Rajput (Khanna Publishers)
- 6. Fluid Mechanics and Machinery by C.S.P. Ojha (Oxford University

Reference Books:

- 1. S.K. Som, G. Biswas and S. Chakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill Publications, 3rd edition, 2011.
- 2. C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, "Fluid Mechanics and Machinery", Oxford University Press,1st Edition, 2010.

SUBJECT CODE: PCPE-106 SUBJECT NAME: MANUFACTURING PROCESSES

Programme: B.Tech. (PE)		L: 3 T: 0 P: 0	
Semester: 4		Teaching Hours: 36	
Theory	/Practical: Theory	Credits: 3	
Interna	al Marks: 40	Percentage of Numerical/Design/Programming Problems:10%	
Extern	al Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total M	farks: 100	Status: Compulsory	
Additio	nal Material Allowed in	n ESE: Scientific Calculator	
On completion of the course, the s		he student will have the ability to:	
CO #		Course Outcomes(CO)	
1	identify various equipment's required the casting and welding processes.		
2	test the products made by casting and welding processes.		
3	apply the knowledge for practical use & application of manufacturing processes.		
4	understand the various process parameters involved in different Manufacturing Processes		
5	implement appropriate machining processes effectively and economically.		
6	design newer combinations of different processes of machining, machining parameters, tool material		
	&shape to enhance the tool life.		
Detailed	Detailed Contents:		
C No	T:41.		

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Casting & Welding	Introduction to metal casting, types of patterns, their materials and allowances. Moulding materials, moulding sand compositions properties, sand testing; types of moulds, moulding Machines. Cores: core sands, types of cores, core baking. Elements of Gating systems and Risers and their design. Cupola and its operation, charge calculations, types of furnaces. Casting processes, and types of castings Casting defects, Introduction and classification of welding processes, welding	8
		positions, joint design and filler metals. Types of welding, Principle of different welding processes, Flame cutting. Welding equipment, Welding Defects, Brazing and soldering.	

Unit 2	Lathe Machine	Lathe & its accessories, Lathe specifications, Lathe cutting tools, speed,	6
	and its	feed, depth of cut & machining time, various operations on Lathe	
	operations	(turning, facing, copy turning, boring, counter boring, parting off,	
		chamfering, threading, chamfering etc.), Turret & Capstan Lathe, Tool	
		holding devices. Detailed calculations and numerical related to material	
		removal rate, surface finish and tool wear for turning operations	
Unit 3	Milling	Milling machines (Horizontal, Vertical & Universal milling machine),	5
	Machines	specifications, accessories, standard and Special attachments, milling	
		operations; Indexing, Type of indexing (Direct, Simple, Compound,	
		Differential, Angular); milling cutters, size, shape & material of milling	
		cutters; numerical related to cutting speed, feed, depth of cut &	
		machining time.	
		Part B	_
Unit 4	Shapers, Planer	Types of Shaper, Various types of presses, feeding mechanisms, Planners	7
	and Drilling	and its operations, specifications, Types of drilling machines,	
	Machines	specifications, operations Multi-spindle drilling head, Drills and	
** ** #	-	Reamers; Type of boring machines Boring tools	
Unit 5	Gear	Methods used in production of spur, bevel and worm gears (Powder	4
	Manufacturing	metallurgy, Moulding, Forming, Rolling, Gear-hobbing and shaping),	
		Gear finishing	6
Unit 6	Grinding and	Type, specifications. Composition of Grinding wheel, Standard marking	6
	Broaching Machines	of Grinding wheel, Shapes of Grinding wheels; Types of Grinding	
	machines	Machines, Dressing and Truing of Grinding wheels; machining time;	
		Centreless grinding, Honing, Lapping, Super finishing. Types of Proaching machines, Proaching tools, Materials for Proach Cutting	
		Broaching machines, Broaching tools, Materials for Broach, Cutting	
		action, Chip disposal, applications of broaching, advantages and limitations	
		IIIIIItatiolis	

- 1. Heine, R.W. C.R. Loperand P.C. Rosenthal "Principles of Metal Casting", McGrawHill, N York
- 2. R.S. Parmar "Welding Technology", Khanna Publishers
- 3. B.S Raghuwanshi "Workshop Technology" Vol.1 & Vol.2 Dhanpat Rai& Co.
- 4. Myron L. Begeman "Manufacturing Processes", John Wiley & Sons
- 5. Production Technology by H.M.T Tata McGraw-Hill Education.

Reference Books:

- 1. Rao, P. N. "Manufacturing Technology", McGraw Hill (2008).
- 2. O.P Khanna "Foundry Technology", DhanpatRai & Co.
- 3. Little "Welding and Welding Technology", McGraw-Hill Education (India).
- 4. S. Kalpakjian "Manufacturing Processes", Pearson India Ltd.

SUBJECT CODE: PCPE-107 SUBJECT NAME: KINEMATICS AND DYNAMICS OF MACHINES

500)10	Sobject Minie, Miteliatico Mid Diminico or Miteliates		
Programme: B.Tech. (PE)	L: 3 T: 0 P: 0		
Semester: 4	Teaching Hours: 36		
Theory/Practical: Theory	Credits: 3		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Compulsory		
Additional Material Allowed in ESE: Scientific Calculator			

On completion of the course, the student will have the ability to:

CO#	Course Outcomes(CO)	
1	understand the working of various primitive components of a machine.	
2	develop mathematical skills for the computation of industry related problems.	
3	determine the various physical parameters of power transmission devices, friction devices and different	
	governing devices.	

4	compute the essential parameters like fluctuation of speed and energy in a flywheel of a vehicle, slotting
	machine etc.
5	understand the function of belt drives, cams, flywheels and governors and solve related problems
6	understand the capacity and use of gears in machines and the concept of gyroscopic couple and its
	impact in ships, planes, two wheeler and four wheeler.

Detail Contents:

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Classification of mechanisms	Basic kinematic concepts and definitions-Degree of freedom, mobility Grashof's law, Kinematic inversions of four bar chain and slider crank chains-Limit positions Mechanical advantage-Transmission angle- Description of some common mechanisms-Quick return mechanism, straight line generators-Universal Joint-Rocker mechanisms	3
Unit 2	Displacement, Velocity and Acceleration	Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations kinematic analysis of simple mechanisms- slider crank mechanism dynamics-Coincident points Coriolis component of acceleration- introduction to linkage synthesis- three position graphical synthesis for motion and path generation	6
Unit 3	Classification of Cams and Followers	Terminology and definitions-Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers	5
Unit 4	Gears	Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclical and regular gear train kinematics	5
		Part B	1
Unit 5	Surface Contacts	sliding and rolling friction- friction drives- bearings and lubrication- friction clutches- belt and rope drives- friction in brakes	5
Unit 6	Flywheels	Turning moment and crank effort diagrams for reciprocating machines Fluctuation of speed, coefficient of fluctuation of speed and energy, Determination of flywheel effect. Governorsand types of governors	3
Unit 7	Brakes, Dynamometers and Clutches	Types of brakes, principle, function of brakes, types of dynamometer, Function of Clutches. Disc and Cone clutches	5
Unit 8	Gyroscope	Introduction, axis of spin, axis of precession, gyroscopic couple, Gyroscope effect on stabilization of ships and planes, stability of automobile (two and four wheeled) taking a turn.	4

Text Books:

- 1. Thomas Bevan, "Theory of Machines", CBS Publishers & Distributors
- 2. Ballaney, P. L. "Theory of Machines", Khanna Publishers
- 3. Shigley "Theory of Machines", McGraw Hill
- 4. Khurmi R. S. "Theory of Machines", S.Chand and Sons

Reference Books:

- 1. Cleghorn W. L. , Mechanisms of Machines, Oxford University Press
- 2. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGraw Hill
- 3. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi,
- 4. Ratan S. S. "Theory of Machines", McGraw Hill

SUBJECT CODE: PCPE-108 SUBJECT NAME: PHYSICAL METALLURGY AND HEAT TREATMENT

SUBJECT NAME: PHYSICAL METALLURGY AND HEAT TREATMENT			
Programme: B.Tech. (PE)		L: 3 T: 0 P: 0	
Semester	:4	Teaching Hours: 36	
Theory/P	Practical: Theory	Credits: 3	
Internal M	Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Mar	r ks: 100	Status: Compulsory	
Additional	Additional Material Allowed in ESE: Scientific Calculator		
On comple	tion of the course, th	e student will have the ability to	
CO#	Course Outcomes(CO)		
1	explain crystallography, deformations and re-crystallization in various crystal structures and their		
	effect on the properties of metals.		
2	use various techniqu	es to check microstructure and mechanical properties of materials.	
3	3 implement various heat treatment processes to enhance the properties of materials.		
4	build new alloys with different structures and properties by altering composition of various alloying		
	elements.		

5 analyze the various transformations in equilibrium phase diagrams.

6 figure out at which temperatures various transformations in phase diagrams become stable.

Detailed Contents:

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Atomic Bonding	Atomic structure of metals, crystal structure, crystal lattice of SC, BCC,	3
	& Crystal Structure	FCC, HCP, crystallographic notation of atomic planes, polymorphism and allotropy	
Unit 2	Experimental tools & techniques	Metallography (Optical TEM, SEM), X Ray Diffraction, Mechanical Properties, strain hardening, cold working	4
Unit 3	Solidification of metals	Nucleation and Growth, Homogeneous Nucleation, Heterogeneous Nucleation, Growth of solid, Smooth or Stable interface growth, Temperature inversion in pure metals-Dendritic growth in pure metals, Constitutional Supercooling, Segregation, Porosity, Freezing of Ingots	5
Unit 4	Equilibrium diagrams	General principles of phase transformation in alloys, phase rule and equilibrium diagrams, Isomorphous systems, Lever rule, Coring, Eutectic system, Eutectoid, Peritectic, Peritectoid, Monotectic and Syntectic reactions, Study of Fe-Fe3C, Cu-Zn, Al-Si Binary diagrams	6
		Part B	
Unit 5	Phase Transformation s	Equilibrium diagrams of a system whose components are subject to allotropic change. Iron carbon equilibrium diagram, phase transformation in the iron carbon diagram: (i) Formation of Austenite (ii) Transformation of austenite into pearlite (iii) Martensite transformation in steel, time temperature transformation curves, Cooling curves	7
Unit 6	Heat treatment of steel	Principles and applications of heat treatment processes viz annealing, normalizing, hardening, tempering,; harden ability & its measurement, surface hardening processes (nitriding, carburizing, case hardening etc), Defects in heat treatment and their remedies	7
Unit 7	Alloying of steels	Effects produced by alloying elements on the structures and properties of steel. Distribution of alloying elements (Si, Mn, Ni, Cr, Mo, Ti, Al, P, Mg, S) in steel	4

Text Books:

- 1. William Callister, "Materials Science and Engineering", John Wiley & Sons
- 2. V Raghavan, "Materials Science and Engineering", PHI learning
- 3. Er. Harvinder Singh Dhaliwal, "A Textbook of Engineering materials and Metallurgy", Laxmi Publications.

- 4. Donald Askeland, "The Science and Engineering of Materials", Cengage learning
- 5. Srinivasan R, "Engineering Materials and Metallurgy", Tata McGraw-hill Education India.
- 6. O.P. Khanna, "Material Science and Metallurgy", Dhanpat rai Publications.

SUBJECT CODE: LPCPE-103 SUBJECT NAME: FLUID MECHANICS AND MACHINERY LABORATORY

Program	me: B.Tech. (PE)	L: 0 T: 0 P: 2	
Semester	:: 4	Teaching Hours:24	
Theory/I	Practical: Practical	Credits: 1	
Internal	Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil	
External	Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr	
Total Ma	rks: 50	Status: Compulsory	
On Comple	On Completion of the course, the student will have the ability to:		
CO#		Course Outcomes(CO)	
1	analyze the working of v	rarious fluid flow measurement devices.	
2	determine the various losses in the fluid flow under different working conditions.		
3 evaluate practically the p		performance of various components involved in pumps and turbines.	
4 check the proper working		ng of various turbines and pumps.	
5 measure/determine the changes in the fluid prope		changes in the fluid properties due to change in certain conditions.	
6 explain the phenomenon		n of fluid flow in various types of flows.	

Experiment
To study flow through a variable area duct & verify Bernoulli's energy equation.
To determine coefficient of discharge for venturimeter.
To determine coefficient of discharge for orifice.
To determine the head loss in a pipe line due to sudden expansion/sudden contraction/ bend.
To determine friction coefficients for pipes of different materials.
To draw Characteristics of Francis Turbine.
To study constructional features and characteristics of reciprocating or centrifugal pump.
To draw the characteristics of Pelton turbine.
One Minor Project based on the syllabus Laboratory of Fluid Mechanics & Machinery Subject

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: LPCPE-104

SUBJECT NAME: KINEMATICS AND DYNAMICS OF MACHINES LABORATORY

Programme: B.Tech. (PE)		L: 0 T: 0 P: 2
Semester:	4	Teaching Hours:24
Theory/Pr	actical: Practical	Credits: 1
Internal Ma	arks: 30	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 20		Duration of End Semester Exam(ESE): 1.5 hr
Total Mark	s: 50	Status: Compulsory
On Completion of the course, the student will have the ability to:		
CO#		Course Outcomes(CO)
1	understand the worki	ng of different types of link motions and mechanisms.
2	understand the worki	ng and application of gears and gear trains.
3	understand the worki	ng and application of brakes and clutches.
4	compute the essential	parameters of quick return mechanisms and their application.
5	understand the function	on and application of cams, flywheels and belts.
6	understand the capaci	ity and use of dynamometers.

S. No.	Experiment
1	Study of working principles and construction of the different types of link motions and mechanisms.
2	Study of different types of gears and gear trains.
3	Study of different types of brakes and clutches.
4	Study of various types of quick return mechanisms and determination of quick return effects.
5	To study various types of cams and followers and the working, construction of a cylindrical cam for
	doing operation.
6	To study the flywheel and draw turning moment and crank effort diagram for a four stroke, single
	cylinder petrol and diesel engines.
7	Study various types of belts and calculate the length of belt and power transmitted by the flat and V
	belts.
8	Study of various types of dynamometers and calculate the forces on a multi cylinder petrol engine.
9	One Minor Project based on the syllabus Laboratory of Kinematics and Dynamics of Machine Subject

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: LPCPE-105

SUBJECT NAME: MANUFACTURING PROCESSES AND PHYSICAL METALLURGY & HEAT TREATMENT LABORATORY

Programme: B.Tech. (PE)	L: 0 T: 0 P: 4
Semester: 4	Teaching Hours: 48
Theory/Practical: Practical	Credits: 1
Internal Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr
Total Marks: 50	Status: Compulsory

On Completion of the course, the student will have the ability to:

CO#	Course Outcomes(CO)		
1	apply this knowledge for practical use and application of manufacturing processes in the industries.		
2	understand the various process parameters involved in different machining processes.		
3	understand the essential components of casting and welding processes.		
4	understand the crystal structures and microstructure of materials.		
5	know about the effect of quenching medium and effect of annealing time on mechanical properties of		
	steel.		
6	recognize the various phases of Fe-C diagram and effect of cooling rate in formation of Austenite, bainite,		
	martensite and pearlite.		

S. No.	Experiment
1	To study of MIG/TIG and PMIG/PTIG welding equipment and making a weld joint by this process.
2	To study the resistance welding processes and prepares a spot-welded joint.
3	To determination of permeability of a moulding sand sample and to test tensile, compressive, transverse
	strength and hardness a moulding sand in dry/wet conditions.
4	To determine clay content and moisture content in a moulding sand sample and measurement of grain
	fineness number and find shatter index of different sand samples and to compare and discuss the results.
5	To study of recommended cutting speeds/feed/depth of cut for different H.S.S tool-MS work material
	combinations.
6	To study different indexing methods and calculate indexing movements by (Simple, Compound,
	Differential and Angular) indexing method.
7	One Minor Project based on the syllabus Laboratory of Manufacturing Processes Laboratory Subject
8	Preparation of model and study of atomic structures of metals.
9	Practice of specimen preparation (cutting, mounting, polishing, etching)) and study of microstructure of
	mild steel and aluminum specimen.
10	Hardening of steel specimen and study the effect of quenching medium on hardness of steel.
11	Annealing the steel specimen and study the effect of annealing time and temperatures on hardness of

	steel.
12	Study of Iron-Carbon diagram and its various phases.
13	Study of T-T-T diagram and formation of austenite, bainite, martensite and pearlite.
14	One Minor Project based on the syllabus Laboratory of Physical Metallurgy & Heat Treatment Subject

Reference Material

Manuals available in Laboratory.

SUBJECT CODE: MCPE-101 SUBJECT NAME: ENVIRONMENTAL SCIENCE

Programme: B.Tech. (PE)	L: 2 T: 0 P: 0		
Semester: 4	Teaching Hours: 26		
Theory/Practical: Theory	Credits: 0		
Internal Marks: 40+10	Percentage of Numerical/Design/Programming Problems: 0%		
External Marks: Nil	Duration of End Semester Exam(ESE):		
Total Marks: 50	Status: Mandatory		

Additional Material Allowed in ESE: Nil

On completion of the course, the student will have the ability to

CO#	Course Outcomes(CO)	
1	measure environmental variables and interpret results.	
2	evaluate local, regional and global environmental topics related to resource use and management.	
3	propose solutions to environmental problems related to resource use and management.	
4	interpret the results of scientific studies of environmental problems.	
5	describe threats to global biodiversity, their implications and potential solutions.	

S. No.	Title	Content details	Credit
11	N 1	(Part A)	Hrs.
Unit 1	Natural	Renewable and non-renewable resources: Natural resources and	2
	Resources	associated problems: Forest resources: Use and over-exploitation,	
		deforestation, case studies, Timber extraction, mining, dams and their	
11	Mator	effects on forests and tribal people.	4
Unit 2	Water	Use and over-utilization of surface and ground water, floods, drought,	4
	resources	conflicts over water, dam's benefits and problems, Food Resources:	
		World food problems, changes caused by agriculture and over grazing,	
		effects of modern agriculture, fertilizers- pesticides problems, water	
		logging, salinity, case studies, Energy Resources: Growing energy needs,	
		renewable and non-renewable energy sources, use of alternate energy	
		sources, case studies, Land Resources: Land as a resource, land	
		degradation, man induces landslides, soil erosion, and desertification.	
Unit 3	Eco Systems	Concept of an ecosystem, Structure and function of an ecosystem,	4
		Producers, consumers, decomposers, Energy flow in the ecosystems,	
		Ecological succession, Food chains, food webs and ecological pyramids,	
		Introduction, types, characteristic features, structure and function of the	
		following ecosystems: Forest ecosystem, Grass land ecosystem, Desert	
		ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans,	
		estuaries)	
		Part B	
Unit 4	Biodiversity	Introduction-Definition: genetics, species and ecosystem diversity,	5
	and it's	Biogeographically classification of India, Value of biodiversity:	
	Conservation	consumptive use, productive use, social, ethical, aesthetic and option	
		values, Biodiversity at global, national and local level, India as a mega	
		diversity nation, Hot-spots of biodiversity, Threats to biodiversity:	
		habitats loss, poaching of wild life, man wildlife conflicts, Endangered	
		and endemic spaces of India, Conservation of biodiversity: in-situ and	
		ex-situ conservation of biodiversity.	

Unit 5	Environmental Pollution	Definition, causes, effects and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards.	2
Unit 6	Solid waste Management	Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies.	2
Unit 7	Social issues and the Environment	Form unsustainable to sustainable development, Water conservation, rain water harvesting, water shed management, Resettlement and rehabilitation of people; its problems and concerns, case studies, Environmental ethics: issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies, Environment protection Act, Air (prevention and control of pollution) Act, Water (prevention and control of pollution) Act, Wildlife protection act, Forest conservation act.	4
Unit 8	Human population and the environment	Population growth and variation among nations, Population explosion- family welfare program, Environment and human health, Human rights, Value education, HIV / AIDS, Women and child welfare	3

- 1. Textbook of Environmental studies, Erach Bharucha, UGC
- 2. Fundamental concepts in Environmental Studies, D D Mishra, S Chand & Co Ltd
- 3. Environment Biology by Agarwal, K. C., Nidi Publ. Ltd. Bikaner.
- 4. Principle of Environment Science by Cunninghan, W.P.
- 5. Essentials of Environment Science by Joseph.
- 6. Perspectives in Environmental Studies by Kaushik, A.
- 7. Elements of Environment Science & Engineering by Meenakshi.
- 8. Elements of Environment Engineering by Duggal.

Reference Books

E-Books and online learning material

: https://www.ugc.ac.in/oldpdf/modelcurriculum/env.pdf

Online Courses and Video Lectures

SUBJECT CODE: PCPE-109 SUBJECT NAME: INDUSTRIAL AUTOMATION & ROBOTICS

Programme: B .Tech. (PE)	L: 3 T: 0 P: 0	
Semester: 5	Teaching Hours: 36	
Theory/Practical: Theory	Credits: 3	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External Marks: 60	Duration of End Semester Exam (ESE): 3hr	
Total Marks: 100	Status Professional Core	
Additional Material Allowed in FSF: Scientific Calculator		

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#	Course Outcomes COS
1	Contribution of automation to the industry.
2	To differentiate between components of hydraulic and pneumatic systems.
3	Use of Hydraulics & Pneumatics circuits to meet functionality requirements of products.
4	Understand about various types of electrical and electronic controls for industrial applications.
5	To understand the basics of robots thoroughly this will help them to program
6	About applications of robots in industries

Detailed Contents

		Part A	
S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Concept and scope of automation, Advantages and disadvantages of automation Socio economic consideration, Low cost automation.	3
Unit 2	Fluid Power Control	Fluid power control elements and standard graphical symbols. Construction and performance of fluid power generators, Hydraulic and pneumatic cylinders - construction, design and mounting, Hydraulic and pneumatic valves for pressure, flow and direction control, Servo valves and simple servo systems with mechanical feedback, governing differential equation and its solution for step position input, Basic hydraulic and pneumatic circuits.	8
Unit 3	Pneumatic Logic Circuits	Design of pneumatic logic circuits for a given time displacement diagram or sequence of operations.	3
Unit 4	Electrical and Electronic Controls	Introduction to electrical and electronic controls such as electromagnetic controllers - transducers and sensors, microprocessors, programmable logic controllers (PLC), Selection & industrial applications, Integration of mechanical systems with electrical, electronic and computer systems.	6
		Part B	
Unit 5	Fluidics	Boolean algebra, Truth tables, Conda's effect, Fluidic elements their construction working and performance characteristics, Elementary fluidic circuits.	3
Unit 6	Transfer Devices and Feeders	Transfer Devices and Feeders, their Classification, Construction details and application of transfer devices and feeders (Vibratory bowl feeder, reciprocating tube feeder and centrifugal hopper feeder).	4
Unit 7	Robotics	Introduction, classification based on geometry, devices, control and path movement, End effectors - types and applications, Sensors - types and applications, Concept of Robotic/Machine vision, Teach pendent, Mechanical grippers & their types.	6
Unit 8	Industrial Applications	Industrial Applications of Robots for material transfer, Machine loading /unloading, welding, assembly and spray-painting operations.	3

Text Books

1. A. K. Gupta, "Industrial Automation and Robotics", Laxmi Publication (P) Limited.

2. Anthony Esposito, "Fluid Power with applications" Pearson prentice Hall.

- 3. SR Majumdar, "Pneumatic Control", Tata McGraw Hill.
- 4. SR Deb," Robotics and Flexible Automation", Tata McGraw Hill 5.

Additional Books:

- 1. Harry Colestock, "Industrial robotics: selection, design, and maintenance.
- 2. Robert technology Fundamentals by J.G. keramas, Delmar publisher.

SUBJECT CODE: PCPE-110 SUBJECT NAME: INSPECTION & OUALITY CONTROL

		Sedseer mine. Insi herion a generit control
Programme: B. T	ech. (PE)	L: 3 T: 0 P: 0
Semester: 5 th		Teaching Hours: 36
Theory/Practical:	Theory	Credits: 3
Internal Marks: 4	0	Percentage of Numerical/Design/Programming Problems: 20%
External Marks:	50	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100		Status Professional Core
Additional Material Allowed in ES		ESE: Scientific Calculator
On completion of	the course, the	student will have the ability to:
CO#. Course	Course Outcomes COS	
1 Demons	Demonstrate and apply the concept of Inspection in an industrial organization.	
2 Develop	o in-depth know	ledge of quality and management.
3 Apply v	arious quality c	ontrols tools in the industries to enhance the quality.

4	Develop analytical skills for investigating and analyzing quality management issues in the industry and suggest
	implementable solutions to those.

Explain the concept of process capability. 5

Develop in-depth knowledge on various aspects of quality management systems 6

Detailed Contents:

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Inspection	Introduction to Inspection, Objectives of Inspection, Inspection Planning, Measurement Errors, Types of Inspection Difference between Inspection & Quality Control.	4
Unit 2	Quality	Introduction to quality, Quality definitions, Total quality control, Quality characteristics, Quality traits, Quality management principles or quality principles, Quality function, Organizing for quality, Quality policy, Quality system, Quality planning, Quality of design, Quality circle-a way to quality improvement, Total quality management (TQM).	6
Unit 3	Quality Costs	Cost of quality, Hidden costs of quality, Computing cost of poor quality, Examples of quality costs with respect to functions, Value of quality, Quality cost models, how cost reduction is done through quality improvement?	5
	Part B		
Unit 4	Quality Assurance	Introduction to quality assurance, advantage of quality assurance, principles used in quality assurance, quality assurance product life cycle, types of quality assurance, various aspects quality assurance, how quality assurance can be evaluated?	5
Unit 5	Quality Control	Total Quality Control, Objectives of Quality Control, Principles of Quality Control, Quality Control Tools, Statistical Quality Control, Control Charts, Construction of Control Charts for Variables (X bar, R, σ - Chart) and Attributes (p, np, C, U Charts), Acceptance Sampling by Attributes, AOQ & OC Curves, Types of Sampling Plans, Process Capability.	10
Unit 6	Quality Management System (QMS)	Introduction to QMS/ certification system, Important definitions, Benefits of a QMS, An over-view of ISO series, ISO 9001:2000 requirement (main & sub clauses), Steps to registration, Documentation requirements, A work about other common standards, principles in ISO 9000	6

Text Books:

Kenedy, E.V. & Andrews Donald, "Inspection and Gauging", Industrial Press Inc., 1977.
 Juran, J.M. & Gryan, F.M, "Quality Planning and Analysis", Tata McGraw Hill, 1995.

3. Grant, E.L. & Richards, S.L., "Statistical Quality Control", McGraw Hill, 1998.

Additional Books:

1. Mahajan. M, "Statistical Quality Control", Dhanpat Rai & Co., 2008.

2. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.

SUBJECT CODE: PCPE-111 SUBJECT NAME: METAL FORMING

Programme: B. Tech. (PE)	L: 3 T: 0 P: 0		
Semester: 5 th	Teaching Hours: 36		
Theory/Practical: Theory	Credits: 3		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 60%		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status Professional Core		
Additional Material Allowed in ESE: Scientific Calculator			

On completion of the course, the student will have the ability to:

	section of the course, the student will have the ability to:
CO#.	Course Outcomes COS
1	Demonstrate and correlate the theory of metal forming with the actual processes in the industry.
2	Develop in-depth knowledge of lubrication and its mechanisms.
3	Understand the state of stress in various metal forming processes.
4	Develop analytical skills for investigating and analyzing metal deformation in various forming processes.
5	Explain and utilize different analytical methods such as finite element analysis, upper bound method.
6	Develop better models of manufacturing using metal forming techniques

Detailed Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Classification of metal forming processes, hot and cold working processes and their advantages and disadvantages. Variables in metal forming process: Work material, tooling, friction and lubrication at tool work piece interface, mechanics of deformation, effects of deformation on mechanical and metallurgical properties, Tresca's and Von Mises yield criteria.	8
Unit 2	Rolling	Rolling of flat slabs and strips, stress evaluation of roll pressure for homogenous deformation with constant yield stress, assumptions and their justifications, evaluation of load, torque and mill power for cold rolling process, stress evaluation for rolling with high friction. Friction hill, effect of elastic deformation, minimum thickness of strip in rolling, empirical equation for measurement of rolling loads for hot and cold rolling, rolling defects, causes and remedies.	8
Unit 3	Forging	Determination of forging pressure for thin strip for low and high friction conditions, pressure distribution for sticking and sliding friction regions, forging of flat circular discs.	6
		Part B	
Unit 4	Drawing and extrusion	Drawing and extrusion processes for rods, wires and tubes, evaluation of drawing stress and force for wire drawing and extrusion under homogenous deformation without and with strain hardening conditions through conical dies, effect of friction, maximum reduction per pass under frictionless condition, effects of back pull and die geometry, optimum die angle, drawing stress for tube drawing with a conical die with and without internal support, wire drawing and extrusion defects, causes & remedies.	8
Unit 5	Metal forming lubrication	Friction at die-work piece interface, lubrication mechanisms, boundary lubrication, mixed lubrication, hydrodynamic lubrication, lubricants for wire drawing, rolling, extrusion, forging and sheet metal working. Metal forming machines, classification and characteristics of metal forming machines, metal forming hammers and presses.	6

Text Books:

1. Row, "Principles Industrial metal working processes", Prentice Hall of India

2. Surinder Kumar, "Metal working", DhanpatRai and Sons

3. Avitzur, "Metal Forming", Marcel Dekker

4. William F. Hosford, Robert M. Caddell, "Metal Forming: Mechanics and Metallurgy", Cambridge university press

5. R. H. Wagoner, J.-L. Chenot, "Metal Forming Analysis", Cambridge university press

SUBJECT CODE: PCPE-112 SUBJECT NAME: ENGINEERING METROLOGY

		SUBJECT NAME. ENGINEERING METROLOGT
Program	nme: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester	r: 5	Teaching Hours: 36
Theory/I	Practical: Theory	Credits: 3
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External	l Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100		Status Professional Core
Addition	Additional Material Allowed in ESE: Scientific Calculator	
On comp	pletion of the course, th	e student will have the ability to:
CO#.	Course Outcomes Co	OS
1	Understand the conce	pt of tolerances and gauge design.
2	Use the various types	of measuring instruments according to the specific requirements along with the knowledge of their
	working principles.	
3	Measure and testing o	f different types of gears.

- 4 Familiarize with the working of optical measuring instruments
- 5 Utilize transducers for various measurements.
- 6 Measure pressure, torque and force using different techniques.

Detailed Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Concept Of Measurement	General concept, measurement systems, Units and standards, measuring instruments: sensitivity, stability, range, accuracy and precision, static and dynamic response, repeatability, systematic and random errors, correction, calibration	3
Unit 2	Limits, Fits And Tolerances	Concepts of interchangeability, need for standards system of limits, fits and tolerances. BIS:919:1963 standard system, selection of limits and fits, exercise on limits, fits and tolerances, design principles for limit gauges, Taylor's principles, types of limit gauges, tolerances on limit gauges.	4
Unit 3	Measuring And Gauging Instruments	Mechanical linear and angle measuring instruments, verneir calipers, micrometers, dial gauges, bevel protectors, sine bars, spirit level, optical instruments autocollimator, tool room microscope. Comparators, principle, types of comparators, mechanical, optical, pneumatic, electrical comparators.	6
Unit 4	Geometrical Metrology And Surface Finish	Concepts of form errors, straightness, flatness, roundness errors and their measurements, concept of micro and macro errors, measurement of surface roughness, stylus method using, mechanical, electrical magnification methods, Interference method – using optical flat and interferometers.	5
		Part B	
Unit 5	Screw Threads And Gear Metrology	Elements of screw threads metrology, measurement of major, minor and effective diameters of external and internal screw threads, measurement of pitch and screw thread angle, Elements of gear metrology, measurement of gear tooth thickness, gear profile, pitch and run out for involute gears, gear rolling test.	6
Unit 6	Transducers	Transducers, types, governing principles of transducers, Examples. Displacement measurement, detailed study of various types of displacement transducers, Velocity transducers	5
Unit 7	Force, Torque and Pressure Measurement	Mechanical, pneumatic, and hydraulic load cells, torque measuring devices, dynamometers, types of strain gauges, factors affecting strain measurement, Electrical strain gauges, gauge material, use of strain gauges for the measurement of the force and torque, Pressure measurement, types of pressure transducer, differential pressure measuring devices.	4
Unit 8	Advances in Metrology	Basic concept of CMM and its types, Advantages and application of CMM, CMM probes, types of probes – contact probes and non-contact probes, Machine Vision – Introduction to machine vision, functions, applications and advantages of machine vision,	3

Text Books:

- 1. R.K.Jain, "Engineering Metrology", S. Chand and Company
- 2. I.C.Gupta, "Engineering metrology", Dhanpatrai & sons Delhi
- 3. D.S.Kumar, "Mechanical Measurement & Control", Metropolitan Publishers
- 4. R.K. Rajput, "Engineering Metrology and Instrumentation", S.K. Kataria & Sons.

Additional Books:

- 1. Doeblin, "Mechanical Measurement", Mcgraw Hill.
- 2. Gharam T. smith, "Industrial Metrology", Springer

SUBJECT CODE: PCPE-113 SUBJECT NAME: MACHINING SCIENCE

	me: B. Tech. (PE)	L: 3 T: 0 P: 0	
Semester:	: 5 th	Teaching Hours: 36	
Theory/P	ractical: Theory	Credits: 3	
Internal N	Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%	
External I	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100		Status: Professional Core	
Additional Material Allowed in ESE: Scientific Calculat		ESE: Scientific Calculator	
On compl	On completion of the course, the student will have the ability to:		
CO#.	Course Outcomes COS		
1	Demonstrate and apply	the concepts of machining.	
2	Develop in-depth know	ledge of tool geometry and tool life.	

Apply various metal cutting theory in the industries to enhance the quality and reduce the cost of manufacturing... 3

4 Develop analytical skills for investigating and analyzing tool wear and tool failure.

5 Explain and utilize the concept of machinability.

Develop an economical model of machining. 6

Detailed Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction To Machining Processes	Definition And Classification Of Machining Processes, Introduction To Single Point, Multipoint And Abrasive Cutting Tools. Introduction To Different Machining Processes Parameters In Turning, Drilling, Boring, Milling, Shaping, Planning And Grinding Operations.	6
Unit 2	Tool Geometry	Importance Of Tool Geometry, Geometry Of Single Point Cutting tool, Milling Cutters, Drilling Tools And Broaching Tools.	4
Unit 3	Mechanics Of Metal Cutting	Chip Formation Process, Type Of Chips, Orthogonal Cutting, Oblique Cutting, Merchant Theory, Calculations Of Shear Angle, Shear Stress, Shear Strain, Strain Rate, Kinetic Coefficient Of Friction, Velocity Relations, Calculation Of Various Forces, Lee And Shaffer Theory.	5
		Part B	
Unit 4	Tool Wear And Tool Life	Introduction, Types Of Tool Wear, Wear Mechanism, Tool Life, Variables Affecting The Tool Life, Determination Of Tool Life Exponents, Machinability, Simple Numerical Problems.	5
Unit 5	Thermal Aspects Of Machining	Introduction, Equations Of Heat Flow, Temperature In Orthogonal Cutting, Experimental Determination Of Cutting Temperatures, Cutting, Fluids, Their Selection And Application.	6
Unit 6	Measurement Of Cutting Forces	Introduction, Need, And Basic Methods of Measuring Cutting Forces, Introduction To Dynamometers, Working Principles And Construction Of Lathe Dynamometer, Drilling Dynamometer And Milling Dynamometers.	6
Unit 7	Economics Of Machining:	Machining Cost, Optimum Cutting Speed, Restrictions On Cutting Conditions, And Comparison Of The Criteria.	4

Text Books:

1. G.K. Lal, "Introduction to Machining Science, "New Age International Ltd,

2. B.L.Juneja ,G.S. Sekhon, "Fundamentals of Metal Cutting and Machine Tools", New Age International Ltd

Bhattacharya, "Metal cutting Principles", CBS Publishers
 R.K. Rajput, "Production Technology", S Chand and company
 P.C.Sharma, "Production Engineering" S Chand and company

Additional Books:

1. Fundamentals of Metal Machining & Machine Tools by Winston A. Knight, Geoffery Boothroyd

SUBJECT CODE: LPCPE-106 SUBJECT NAME: INDUSTRIAL AUTOMATION & ROBOTICS LABORATORY

SUBJECT NAME: INDUSTRIAL AUTOMATION & ROBOTICS LABORATORY		
Programme: B. Tech. (PE)		L: 0 T: 0 P: 2
Semester: 5 th		Teaching Hours: 24
Theory/P	ractical: Theory	Credits: 1
Internal 1	Marks: 30	Percentage of Numerical/Design/Programming Problems: NIL
External	Marks: 20	Duration of End Semester Exam (ESE): 1.5 hr
Total Ma		Status: Professional Core
On comp	letion of the course, the	student will have the ability to:
CO#.	Course Outcomes CO	S
1	Undertake kinematics a	nalysis of robot manipulators.
2	Describe different mech	nanical configurations of robot manipulators.
3	To differentiate between components of hydraulic and pneumatic systems.	
4	Have an understanding of the functionality and limitations of robot actuators.	
5	To differentiate between components of hydraulic and pneumatic control systems	
6	Use of Hydraulics & Pn	neumatics circuits to meet functionality requirements of products.
Detailed	Contents:	
S. No.	Experiment	
1	Design and assembly of hydraulic / pneumatic circuit.	
2	Study of power steering mechanism using cut piece model.	
3	Study of reciprocating movement of double acting cylinder using pneumatic direction control valves.	
4	Use of direction control valve and pressure control valves clamping devices for jig and fixture.	
5	Study of robotic arm and its configuration.	
6	Study the robotic end effectors.	
7	Study of different types of hydraulic and pneumatic valves.	
8		ed on the syllabi of Strength of Material Subject

Reference Material:

Manuals available in Laboratory.

SUBJECT CODE: LPCPE-107 SUBJECT NAME: METAL FORMING & MACHINING SCIENCE LABORATORY

Programme: B. Tech. (PE)	L: 0 T: 0 P: 2		
Semester: 5 th	Teaching Hours: 24		
Theory/Practical: Theory	Credits: 1		
Internal Marks30	Percentage of Numerical/Design/Programming Problems: NIL		
External Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr		
Total Marks: 50	Status: Professional Core		
On completion of the course, the			
CO#. Course Outcomes COS			
1 Measure the torque, and	thrust in various machining operations.		
	ocouple for determining tool chip interface temperature.		
3 Determine tool wear and	d tool life of a machining tool.		
4 Determine the coefficient	nt of friction in various metal forming processes.		
5 Estimate the load requir	ed for plastic deformation of material.		
6 Develop an experiment	al setup to calculate the effect of various parameters in various machining and metal forming		
processes.			
Detailed Contents:			
S. No. Content details			
(Part A)			
	bint cutting tool of given tool signature and by using lathe tool dynamometer measure the cutting		
	n order to calculate the following:		
1 a. Shear plane angle			
b. Coefficient of friction	1		
c. Power consumption			
	nometers measure the torque, and thrust in Drilling operation.		
	thermocouple, measure the tool chip interface temperature.		
	ool life exponents by Facing test.		
5 To study the effect of cu operation.	utting variables on surface finish in any cutting (Turning, Drilling, Milling, Shaping, grinding etc)		
	of percentage of reduction and geometry die on the drawing and extruding load.		
	f clearance and shear angle on the blanking and piercing operations.		
	tion of coefficient of friction for metal forming.		
	n the sheet rolling process.		
	g operation (flowability, forging load etc by plasticine model.		
, <u>1</u>	One Minor Project based on the syllabi of Strength of Material Subject		
Reference Material:			

Reference Material:

Manuals are available in laboratory

SUBJECT CODE: LPCPE-108 SUBJECT NAME: ENGINEERING METROLOGY LABORATORY

D	SUBJECT NAME: ENGINEERING METROLOGI LADORATORI		
Programme: B. Tech. (PE)		L:0T:0 P:2	
Semester	:5	Teaching Hours: 24	
Theory/P	Practical: Practical	Credits: 1	
Internal	Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil	
External	Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr	
Total Ma	rks: 5 0	Status: Professional Core	
On comp	letion of the course, the	student will have the ability to:	
CO#.	Course Outcomes CO	S	
1	Use tool makers micros	cope and profile projector	
2	Use the various types o	f measuring instruments according to the specific requirements along with the knowledge of their	
	working principles.		
3	Measure and testing of different types of gears.		
4	Familiarize with the working of optical measuring instruments		
5	Utilize the slip gauges and comparators		
6	Calibrate a gauge and measure pressure and force using different techniques.		
Sr. No.	Experiment		
1	Measure the taper angle in the given workpiece by using sine bar & slip gauges.		
2	Measure the surface roughness of the given workpiece on surface roughness measuring instrument.		

3	Measure the various gear tooth profile parameters.
4	To measure various elements of screw thread by (a)Tool Makers Microscope & (b) Profile Projector
5	To check the flatness of surface plate by Auto-collimator.
6	To check the diameter of a rod by compactors and slip gauges.
7	Find out the strain in a given workpiece under given loading by using strain gauges. Calibration of pressure gauge
8	One Minor Project based on the syllabi of Strength of Material Subject

Reference Material:

Manuals are available in laboratory

SUBJECT CODE: PCPE-114 SUBJECT NAME: INDUSTRIAL TRIBOLOGY

Program: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 6 th	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
External Marks: 60	Duration of End Semester Exam (ESE): 3hrs.
Total Marks: 100	Status: Professional Core.

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#. Course Outcomes COS

00	
1	Understand the various theoretical concepts of tribology and co-relate the same with actual processes in industry.
2	Enable to understand the laws of various types of friction and measurement of the same practically.
3	Enhance the knowledge of different laws of wear and measurement of the same practically in various environmental
	conditions.
4	Understand the prevention and control of wear and friction by using different mechanisms of lubrication.
5	Suggest better lubricants depending upon the physical and environmental conditions.
6	Enable to design the tribological components (bearings) with respect to the required conditions.

Detailed Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Tribological considerations: Nature of surfaces and their contact, Physical & mechanical	5
		properties of surface layer, Geometrical properties of surfaces, Methods of studying	
		surfaces, Study of contract of smoothly and rough surfaces.	
Unit 2	Friction	Role of friction, Laws of static friction, Causes of friction, Adhesion theory, Laws of rolling	9
		friction, Friction measurements, Mechanism of friction, Friction of metals and non-metals,	
		Adhesion of junctions due to friction, Principles of rolling motion, Slip-Reynolds and	
		Heathcote, Rolling in plastic range, Track width and rolling friction.	
Unit 3	Wear	Definitions of wear, Mechanism of wear, Types of wear, Analysis of adhesive wear and	9
		abrasive wear, Stages of fretting wear, Friction affecting wear, Wear measurement, Wear of	
		metals and non-metals.	
		Part B	
Unit 4	Lubrication and	Introduction, Principle of lubrication, Function of lubricants, Lubrication mechanism,	5
	lubricants	Types of lubricants and their industrial uses, Properties of lubricants, Lubricant additives,	
		Chemical characteristic values of lubricants, Solid lubricants and their categories.	
Unit 5	Special Topics	Selection of bearing and lubricant, Bearing maintenance, Diagnostic maintenance of	8
		tribological components, Lubrication systems, Filters and filtration.	

Text Books:

- 1. A.D. Sarkar, "Wear of Metals", Pergamon Press.
- 2. Sushil Kumar Srivastava, "Tribology in Industries", S.Chand & Co. Ltd.
- 3. R.D. Arnell, P.B. Davies, J.Halling and T.L. Whomes, "Tribology: Principles and Design Applications", Springer-Verlag.
- 4. Raymond G. Bayer, "Mechanical Wear Prediction and Prevention", Marcel Dekkar, Inc.
- 5. Basu, Sengupta and Ahuja, "Fundamentals of Tribology", PHI Learning.

Additional Books

- 1. Kenneth C.Ludema and Oyelayo O. Ajayi, "Friction, Wear, Lubrication: ATextbbok in Tribology", CRC Press.
- 2. ASM Handbook (vol.18), "Friction, Lubrication and Wear Technology", ASM International.
- 3. Raymano O. Gunther, "Lubrication", Bailey Bros & Swinfan Ltd.

SUBJECT CODE: PCPE-115 SUBJECT NAME: MACHINE TOOL DESIGN

Programme: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 6 th	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 30%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Professional Core

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to: CO#. Course Outcomes COS

CO π.	Course Outcomes COS
1	Understand the various requirements of the machines.
2	Access the various feed drives and spindle drives design on the basis of varying load conditions.
3	Enhance the knowledge regarding the manufacturing aspects of the machining.
4	Get equipped with the knowledge of machine tool dynamics.
5	Evaluate the purpose and principal of tool geometry, construction and design.
6	Access machine tools control system which will further help in recognizing the different operational conditions on the
	machine.

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Data Calculation	Turning: Cutting force, Cutting Speed and Feed Rate. Drilling: Cutting forces, Cutting Speed and Feed Rate. Milling: Chip Section, Cutting force, Milling with Cutter Heads. Grinding: Grinding Forces, Cutting Speed, Feed Rate, and Depth Setting. Planning, Shaping and Broaching.	3
Unit 2	General Requirements of the Machine Tool	Accuracy of Shape, Dimensional accuracy and surface finish of the components produced. High Productivity. High Technical and Economic Efficiency.	5
Unit 3	Design Principles	Stiffness and Rigidity of the Separate Constructional Elements and their Combined behavior Under Load, Static Rigidity, Dynamic Rigidity, Natural frequencies, Damping, Mode of Vibration.	5
Unit 4	Standardization of Spindle Speeds and Feed Rates	Layout of Speed Change Gears. Saw Diagrams for Arithmetic Progression, Geometric Progression, Harmonic Progression and Logarithmic Progression of spindle speeds for Mechanical Stepped Drives for Machine Tools. Establishment of Gear Ratios, Layout of the Intermediate Reduction Gears, Calculation of Transmission Ratios, Pulley Diameter, Gear Wheel Diameters and Number of Teeth. Ray Diagram. Speed Diagram Part B	5
Unit 5	Electrical, Mechanical and Hydraulic Drives for the Operational Movements	Electric Drive and Control Equipment. Mechanical and Hydraulic Drives. Drives for Producing Rotational Movements, Stepped Drives, Step less Drives. Drives for Producing Rectilinear Movements. Backlash Eliminator in the Feed Drive Nut.	5
Unit 6	Automatic Control	Principles and Constructional Elements. Automatic Driving of the Cutting Movements, Feed Movements, and Return Movements. Automatic control of movements for Starting, Stopping and Reversing. Automatic Clamping and Unclamping the work piece. Automatic Selection of Required Speeds, Automatic Setting of Tools. Automatic Measurement of Machined Shape and Surfaces. Transport of Components from One Machine to the Next. Applications (Examples of Automatic Machines). Control for Moving Slides into Defined, Fixed Positions. Control of Feed Movements in Producing Profiles or Surface by Continuous Path Control	3
Unit 7	Design of Constructional Elements	Machine Tool Structures, Structural Elements Design for Centre Lathe, Drilling Machine, Knee Type Milling Machine, Planning Machine, Boring Machine, and Grinding Machines.	4
Unit 8	Design of Slide Ways:	Design of Slide ways for Tables, Saddles and Cross-slides. Antifriction Bearings for slide ways. Hydrostatically Lubricated Slide ways.	3
Unit 9	Design of Spindles and Spindle Bearings:	Design of Spindles for Strength and Stiffness. Design of Spindles for Balancing. General Layout and Design of the Driving Elements and the Spindle Bearings. Selection and General Layout of Ball and Roller Bearings for Supporting Spindles. Design of Secondary Drives for Machine Tools, Design of Cutting Drives, Feed Drives and Setting Drives.	3

- Sen and Bhattacharya, "Machine Tools Design", CBS Publisher. 1.
- 2. N.K. Mehta, "Machine Tool Design", Tata McGraw Hill.
- N. Acherkan, "Machine Tool Design, Four Volumes", Mir Publishers.
 P. H. Joshi, "Machine Tools *Handbook:* Design *and* Operation", McGraw Hill Professional.
- 5. S.K. Basu and D.K. Pal, "Design of machine tools", Oxford and IBH.

Additional Boks

- 1. Pandey, P.C. and Singh, C.K., Production Engineering Sciences, Standard Publishers, New Delhi (2003).
- 2. Kundra T, Rao P.M., Tiwari N. K., "Numerical Control and Computer Aided Manufacturing", Tata McGraw Hill
- 3. 3. Martin S. J., "NC Machine Tools", ELBS publication

Subject Code: PCPE-116 Subject Name: Operation Research

Duc	Subject Name: Operation Research		
Programme: B.Tech. (PE) Semester: 6		L: 3 T: 0 P: 0	
		Teaching Hours: 36	
Theory/Practical: Theory		Credits: 3	
	al Marks: 40	Percentage of Numerical/Design/Programming Problems: 95%	
	al Marks: 60	Duration of End Semester Exam(ESE): 3hr	
	Marks: 100	Status: Professional Core	
		l in ESE: Scientific Calculator, Random Number Table, Normal Table	
	npletion of the course	, the student will have the ability to:	
CO#.	<u><u>Q</u>_1,, <u>111</u>,, <u>11.</u>,</u>	Course Outcomes COS	- 4 4
		define an organization problem including specifying the objectives and parts of the system the	at must
	Programming Models	e problem is solved. Student will be able to industrial and business problems by using Linear	
		apply the knowledge of Transportation and Travelling Salesman Problems in practical life to	maduaa
	the costs	appry the knowledge of Transportation and Travening Salesman Problems in practical me to	reduce
		collect assign jobs and work in industrial and service organizations	
		b develop a mathematical model of the solving the queuing problems in industries, toll plazas,	offices
	and malls.	develop a mathematical model of the solving the queuing problems in mutstries, ton prazas,	onnees
		prepare different strategies of industries or business organizations based upon the market cor	nnatition
		b develop and analyze the projects.	npennon.
	ed Contents	develop and analyze the projects.	
Sr. No		Content Detail	Credit
51.140	The	Part A	Hours
Unit 1	Introduction	Introduction, characteristics, objectives and necessity of operation research (OR), scope of	3
Umt I	Introduction	OR in industry and management. Role of computers in OR, limitations of OR.	5
Unit 2	Linear	Introduction to linear programming, formulation of linear programming problems,	5
Onit 2	Programming	graphical solution, simplex algorithm, computational procedure in simplex, duality and its	5
	Trogramming	concept, application of L.P. model to product mix and production scheduling problems,	
		limitations of linear programming.	
Unit 3	Transportation	Definition of transportation model, formulation and solution methods, and degeneracy in	5
cinte	Model:	transportation problems.	Ľ
Unit 4	Assignment	Definition of assignment model, comparison with transportation model, formulation and	3
	Model	solution methods, the travelling salesman problem	·
		Part B	
Unit 5	Queuing Models:	Application of queuing models, characteristics of queuing models, single channel queuing	4
		theory, solution to single channel with poison arrivals and exponential service infinite	
		population model, Industrial applications of queuing theory.	
Unit 6	Simulation	Concept and use of simulation, advantages and limitations of the simulation technique,	3
		generation of random numbers, Monte-Carlo simulation, and computer-aided simulation:	
		applications in maintenance and inventory management	
Unit 7	PERT & CPM	Work breakdown structure, network logic, critical path, CPM and PERT, slack and floats.	5
		Recourses Leveling & Time cost trade off.	
Unit 8	Game Theory	Concept of game, Two-person zero-sum game, Pure and Mixed Strategy Games, Saddle	4
	-	Point, Odds Method, Dominance Method	
Unit 9	Decision	Decision-making environments, Decision-making under certainty, uncertainty and risk	4
	Making:	situations, Uses of Decision tree	
	ooks.		

Text Books:

- 1. Gupta, P.K. and Hira, D. S. "Operations Research", S. Chand and Company 2014
- 2. Miller, W.D. & Starr, M. K. "Executive Decisions and Operations Research", Prentice Hall Inc, Eglewood Cliffs, N.J, 1969
- 3. Gupta, R. K. "Operations Research", Krishna publishers 2019
- 4. Mahajan, M. "Operation Research" by Dhanpat Rai & Co. Publisher 2014
- 5. Wayne L Winston "Operations Research: Applications and Algorithms" Publisher: Indian University, 4 th edition, 2004
- 6. Taha, H. A. (2016) "Operations Research: An Introduction" 10th edition, Prentice Hall
- 7. Panner Seevam, R. Operation Research PHI 2008
- 8. F.S. Hillier. G.J. Lieberman: "Introduction to Operations Research- Concepts and Cases", 9th Edition, Tata McGraw Hill. 2010
- 9. Ravindran, A., Phillips, D. T. & Solberg, J. J. "Operations Research- Principles and Practice", John Wiley & Sons, 2005.
- 10. Sharma J. K. "Operations Research" Macmillan India Ltd. 2006

Additional Books:

1. Anand Sharma "Operations Research" Himalaya Publications 2014

- 2. Durga Prasad M. V. "Operations Research" Cengage Learning 2012
- 3. Vohra N. D. "Quantitative Techniques in Management", Tata McGraw-Hill 2006
- 4. Gross, D., John F. Shortle, James M. Thompson and Harris, C. "Fundamentals of Queuing Theory", 4th Edition, Wiley India, 2008.
- 5. Trivedi K.S., "Probability and Statistics with Reliability, Queuing and Computer Science Applications", Prentice-Hall of India, New Delhi, 2011.
- 6. P. R. Thie and G. E. Keough "An Introduction to Linear Programming and Game Theory", Wiley, New Jersey, 3rd edition, 2008.

SUBJECT CODE: PCPE-117 SUBJECT NAME: NON TRADITIONAL MACHINING

Programme: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 6 th	Teaching Hours: 36
Theory/Practical: Theory	Credits: 3
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Professional Core

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#. **Course Outcomes COS** Detailed study about advanced machining processes and their applications.. 1 2 Describe principles of nontraditional machining processes and differences of same with conventional machining processes. Apply material removal mechanisms in various non-conventional machining processes. 3 Develop in-depth knowledge on applications of non-traditional process in industry. 4 Explain the concept of material removal rates in processes like Ultrasonic machining and Abrasive Flow Machining, 5 Abrasive Water Jet Machining, Electrochemical Machining. Develop in-depth knowledge on various aspects of Thermal metal removal processes. 6

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification	5
		Nontraditional machining processes, classification based on nature of energy employed in	
		machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes.	
Unit 2	Ultrasonic Machining (USM)	Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM.	5
Unit 3	Abrasive & Water Jet Machining (AJM & WJM)	Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD).Process characteristics-Material removal rate, Nozzle wear, accuracy & surface finish. Applications, advantages & limitations of AJM. Water Jet Machining (WJM): Equipment & process, Operation, applications, advantages and limitations of WJM.	6
Unit 4	Electrochemical Machining (ECM)	Introduction, Principle of electro chemical machining: ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials. Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH.	6
		Part B	
Unit 5	Chemical Machining (CHM)	Elements of the process: Resists (maskants), Etchants. Types of chemical machining process chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process.	5
Unit 6	Electrical Discharge Machining (EDM)	Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM. Introduction to Wire EDM(WEDM) and Dry EDM(DEDM)	6
Unit 7	Plasma Arc Machining (PAM)	Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety precautions, applications, advantages and limitations.	5
Unit 8	Laser Beam	Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM	5

	Machining (LBM)	parameters and characteristics, Applications, Advantages & limitations.	
Unit 9	Electron Beam	Introduction, Principle, equipment and mechanism of metal removal, applications,	5
	Machining (EBM)	advantages and limitations.	

•

- 1. P.C. Panday and H.S. Shan, "Modern Machining Processes ", Tata McGraw Hill.
- 2. G. Boothroyd and W.A. Knight, "Fundamentals of Machining and Machine Tools", Mareel Dekker Inc.
- 3. G.F. Benedict, "Non traditional Manufacturing Processes", Marcel Dekker Inc.
- 4. Amitabha Bhattacharyya "New Technology", , The Institute of Engineers (India), 2000

Additional Books:

- 1. J. Weller, "Nontraditional Machining Processes", Society of Manufacturing Engineers, Publications.
- 2. Carl Sommer, "Non-Traditional Machining Handbook", Advance Publishing, Incorporated.
- 3. Production technology, HMT, McGraw Hill Education India Pvt. Ltd. 2001

SUBJECT CODE: LPCPE-109 SUBJECT NAME: INDUSTRIAL TRIBOLOGY AND MACHINE TOOL DESIGN LAB.

SUBJECT NAME: INDUSTRIAL TRIBOLOGY AND MACHINE TOOL DESIGN LAB.					
Program	Program: B. Tech. (PE) L: 0 T: 0 P: 2				
Semester: 6 th		Teaching Hours: 24			
Theory/Practical: Practical		Credits: 1			
Internal Marks: 30		Percentage of Numerical/Design/Programming Problems: Nil			
External Marks: 20		Duration of End Semester Exam(ESE): 1.5 hr			
Total Ma		Status: Professional Core			
		student will have the ability to:			
CO#.	Course Outcomes CO				
1		Disk apparatus to know the tribological properties of various materials under different			
-	environmental condition				
2		rosion tester apparatus to know the tribological properties of various materials under different			
2	environmental condition				
3	environmental condition	osion tester apparatus to know the tribological properties of various materials under different			
4		uction of kinematic diagrams using tracing paper method/ CAD software.			
5		raw Gearing Diagrams of various machines.			
6					
0	Familiarize with speed	chart, ray diagram and gearing diagram to determine the number of teeth on gears.			
Sr. No.	Experiment				
		e test on wear, coefficient of friction, friction force, weight loss on different materials(MS,			
		n on disk setup under following conditions by varying load and velocity:			
1	a. Dry under normal t				
	b. Dry under high tem				
		he test on wear, coefficient of friction, friction force, weight loss on different materials(MS,			
		n on disk setup under following conditions by varying load and velocity:			
2	a. Lubricated under no				
	b. Lubricated under hi	igh temperature.			
	To study and perform the	he test on erosive wear of different materials (MS, Cu, Brass and CI) by varying the following			
3	parameters:				
5	a. Impingement angle				
	b. Velocity of erodent fl				
		e test on slurry erosive wear of different materials (MS, Cu, Brass and CI) by varying the			
4	following parameters:				
т	a. Impingement angle				
	b. Concentration of slurr	ry			
	Construction of kinemat	ics diagrams of the following machines (using tracing paper method / CAD software):			
5	a. Lathe Machine				
5	b. Drilling Machine				
	c. Milling Machine				
		diagrams of the following machines:			
6	a. Lathe Machine				
0	b. Drilling Machine				
	c. Milling Machine				
7	Determination of number	er of teeth on gears using speed chart, ray diagram and gearing diagram.			
8	One Minor Project based	d on the syllabi of Industrial Tribology Subject			
9	One Minor Project based	d on the syllabi of Machine Tool Design Subject			
L					

Reference Material: Lab Manual

SUBJECT CODE: LPCPE-110 SUBJECT NAME: Non Traditional Machining Laboratory

Programme: B. Tech. (PE)	L:0T:0 P:2
Semester: 5	Teaching Hours: 24
Theory/Practical: Practical	Credits: 1
Internal Marks: 30	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 20	Duration of End Semester Exam(ESE): 1.5 hr
Total Marks: 50	Status: Professional Core

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes COS	
1	Students will be able to perform experimental study on Ultrasonic Machine	
2	Students will be able to perform experimental study on Abrasive Jet Machine	
3	Students will be able to perform experimental study on Electro Discharge Machine	
4	Students will be able to perform experimental study on Electro Chemical Machine	
5	Students will be able to know the process parameters of different non-conventional machining processes	
6	Students will be able to know calculate MRR Surface Textures and Properties of Materials Machined by different	
	non-conventional machining processes	

Sr. No.	Experiment	
1	To study the parameters and properties of Ultrasonic Machine a and Laser Beam Machining	
2	To perform machining of a work piece of Al, MS on Abrasive Jet Machine and study its properties	
3	To perform machining of a work piece of Al, MS on Electro Chemical Machine and study its properties	
4	To perform machining of a work piece of Al, MS on Electro Discharge Machine and study its properties	
5	To perform machining of a work piece of Cu, Brass on Electro Discharge Machine and study its properties	
6	To perform machining of a work piece of Al, MS on Water Jet Machining and study its properties	
7	To Study the Properties and Performance of Plasma Arc Machining and Electron Beam Machining	
8	One Minor Project based on the syllabi of Non Traditional Machining Subject	

Reference Material Lab Manual

Departmental Professional Elective Subjects

Subject Code: PEPE-101 Subject Name: Jig Fixture & Die Design

Programme: B.Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 5	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems:25%	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Professional Elective	
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the	On completion of the course, the student will have the ability to:	

CO# Course Outcomes(CO) 1 To Design jigs for different jobs and products 2 To Design Fixture for different jobs and products 3 To evaluate the economics of designing of jigs and fixtures 4 Study advancements in designing of jigs and fixtures 5 To design Dies and die components 6 To design and evaluate forming dies and equipments

Detailed Contents

Sr. No	Title	Content Detail	Credit Hours
		Part A	
Unit 1	Introduction to Jigs & Fixture	Definition of Jigs & Fixtures, Difference Between Jigs And Fixtures, Advantages, Steps for Design Materials Used In Jigs and Fixture	3
Unit 2	Elements of Jig & Fixtures	Degree of Freedom, 3-2-1 Principles, Choice Of Location, Redundant Location, Diamond Pin Calculation, Locating Methods And Chip Control. Locating Devices Surface Location, Rest Blocks, Pins, V-Blocks, N Equalizers, Profile Locators., Locating Principle, Locating Methods And Devices, Standard Parts, Basic Clamping Principles, Cutting Forces, Rigid Clamping, Wedge Clamping, Cam Clamping, Quick Action Clamps, Toggle Clamps, Simultaneously Acting Clamps. Jig Bushes	7
Unit 3	Design of Jigs	Plate Jigs, Box Jigs, Indexing Jigs, Milling Fixtures, And Indexing-Milling Fixtures, Turning Fixtures, Grinding Fixtures, Universal Jigs, Design Problems Design Of Universal Jigs, Hydro & Pneumatic Jigs, Indexing Jigs	8
Unit 4	Design Of Fixtures	Indexing Fixtures: Indexing Methods, Linear, Rotary, Indexing Jigs, Indexing Fixtures. Assembly And Welding Fixture – Principles Broaching Fixtures, And Assembly Fixtures. Boring Fixtures. Hydro & Pneumatic Fixtures, Turning Fixtures, Milling Fixtures Grinding Fixtures And Design Problems Of Fixtures	8
		Part B	
Unit 5	Elements of Die	Punch, Punch Plate, Die Plate, stripper plate, Top Plate, Shank, Guide pillar, Guide Bushes, gauges, Stock guides ,Die stops, Nest Gages and Pushers, Stock material utilization and strip layouts. Materials selection	4
Unit 6	Types of Dies	Introduction to Bending Dies, Introduction to Inverted Dies and Compound Dies function of various parts of Inverted dies and Compound dies Definition and Introduction of Progressive dies Introduction of Trimming Dies, Notching, , Combination Dies, Introduction to Draw Dies, Inverted Draw Dies,	7
Unit 7	Die Design	Spring selection process. Design of blanking, Piercing Dies, compound progressive Calculation of cutting force and stripping force, importance of cutting force, calculation of press tonnage, calculation of cutting clearance, importance of cutting clearance. Method of reducing the cutting force, Calculation of die size and punch size for blanking and piercing operation.	8
Unit 8	Advancements in Jig Fixture & Die Design	Computer Aided Jigs & Fixtures, Jigs & Fixtures for CNCs Role of Jig Fixtures in FMS, Automated Die Sets, Computer Controlled Dies	3

Text Books:

- 1. Elanchezhizn C., Sunder Selwyn T. & Vijaya Ramnath B. "Design of Jigs, Fixtures and Press Tool" ESWAR Press 2007
- 2. Vijayaraghavan G. K., Sundaravalli S. & Muruganandam A. "Design of Jig Fixture and Press Tool" Suchitra Publications 2016
- 3. Erik K. Henriksen "Jig & Fixture Design Manual" Industrial Press 2010
- 4. Paul Campbel "Basic Fixture Design" Industrial Press 2005
- 5. Balachandran V. "Design of Jig Fixture and Press Tools" Notion Press 2015
- 6. Edverd J Hoffman "Jig And Fixture Design" CENGAGE INDIA 2003
- 7. Sandor Nagyszalanczy "Jigs & Fixtures" Taunton Press 2015

- 8. Venkataraman K. "Design Of Jig Fixture And Press Tool Design" John Willy & Sons 2015
- 9. Joshi, P. H. "Jig and Fixtures" Tata McGraw-Hill Education, 1999

- 1. Franklin-D-Jones "Jigs and Fixtures Design". Forgotten Books 2016
- 2. Cyril Donaldson & V. C. Goold "Tool Design" Tata McGraw-Hill Education, 1976
- 3. Haughton, P. S. "Jigs and Fixtures Design" Springer 1956
- 4. Albert Atkins Dowd, Frank W. "Tool Engineering, Jigs and Fixtures" BiblioBazaar 2016
- 5. Hiram E. Grant, "Jigs and Fixtures Non-standard Clamping Devices", TataMcGraw -Hill. 2014

SUBJECT CODE: PEPE-102 SUBJECT NAME: TOOL AND CUTTER DESIGN

		SUBJECT NAME: TOOL AND CUTTER DESIGN	
Programme: B. Tech. (PE)		L: 4 T: 0 P: 0	
		Teaching Hours: 48	
	neory/Practical: Theory Credits: 4		
Internal	nternal Marks: 40 Percentage of Numerical/Design/Programming Problems: 30%		
	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Ma		Status: Professional Elective	
Addition	al Material Allowed	in ESE: Scientific Calculator	
	letion of the course,	the student will have the ability to:	
CO#.	Course Outcomes		
1		inciple elements of cutting tools and tool geometry.	
2	Evaluate the design	elements and geometrical parameters of the tool life.	
3		nowledge of Twist drill geometry, construction and design.	
4		ect profile of Form tools.	
5	Explain the problem	ns related to measurement of Milling and Broaching.	
6	Explain the problem	ns related to measurement of Reamers.	
Detailed	Contents:		
S. No.	Title	Content details	Credit
		(Part A)	Hrs.
		Cutting Tool materials, desirable properties of cutting tool materials, Relative properties of	
Unit 1	Introduction	the various tool materials and their uses. Fundamentals of cutting tool design. Principles	6
		elements of cutting tools and tool geometry.	
		Design Elements and Geometrical parameters of the tool point. Design for dimensions of	
Unit 2	Design of Single	H.S.S Tools. Construction and design of carbide and ceramic tipped tools, Chip breaker	10
0	Point Tools	purpose construction and design, Design of High production Tools, Principles types and	
		their design.	-
Unit 3	Design of Drills	Purpose and principal types of drills, twist drill geometry, construction and design.	6
	Part B		
Unit 4	Design of Form	Purpose and types of form tools, radial feed and tangential type form tool construction and	6
	Tool	design.	
Unit 5	Design of	Purpose, types and geometry of milling cutters, Design of profile sharpened plain milling	7
	milling cutters	enter, face milling cuter, side milling cutters	
Unit 6	Design of	Purpose and types of broaches, Design and construction of internal broaches and external	7
	Broaches	surface broaches.	
1 .	Design of	Elementary discussion on various types of reamers, construction and geometry of reamers.	6
Unit 7	Reamers	Elementary discussion on various types of reamers, construction and geometry of reamers.	v

Text Books:

- 1. Cyril Donaldson, George H. LeCain, V. C. Goold, "Tool Design", Tata McGraw hill.
- Arshinov& Others, "Metal Cutting Principles and cutting Tool Design and Production ",Mir Publications.
 Helmi A. Youssef, Hassan El-Hofy, "Machining Technology", Taylor and francis Group.

- 1. Leo J. St. Clair, "Design and use of cutting tools", McGraw-Hill.
- William R. Jeffries., "Tool design", Prentice-Hall. 2.

SUBJECT CODE: PEPE-103 UBJECT NAME: INTRODUCTION TO ROBOTICS

		SUBJECT NAME: INTRODUCTION TO ROBOTICS	
	me: B. Tech. (PE)	L: 4 T: 0 P: 0	
Semester			
	ory/Practical: Theory Credits: 4		
Internal	rnal Marks: 40 Percentage of Numerical/Design/Programming Problems: 20%		
External	Duration of End Semester Exam (ESE): 3hr		
Total Ma	arks: 100	Status: Professional Core	
Addition	al Material Allowed in	ESE: Scientific Calculator	
	eletion of the course, th	e student will have the ability to:	
CO#.		Course Outcomes COS	
1		concepts of robotics, their classification and structure.	
2		e drive and control systems used in robotics.	
3		ensors used in robotics.	
4	Perform the robot lang		
5		l implementation of related Instrumentation & control in robotics	
6	Illustrate the Kinemati	ics and Dynamics of robotics	
Detailed	Contents:		
S. No.	Title	Content details	Credit
B. 140.	THE	Content details	Crean
	Thic	(Part A)	Hrs.
Unit 1	Basic Concepts in	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy	
Unit 1	Basic Concepts in Robotics	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability.	Hrs. 4
	Basic Concepts in Robotics Classification and	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The	Hrs.
Unit 1	Basic Concepts in Robotics Classification and Structure of	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability.	Hrs. 4
Unit 1 Unit 2	Basic Concepts in Robotics Classification and Structure of Robotic System	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers.	Hrs. 4 4
Unit 1	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control	Hrs. 4
Unit 1 Unit 2	Basic Concepts in Robotics Classification and Structure of Robotic System	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity	Hrs. 4 4
Unit 1 Unit 2 Unit 3	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control Systems	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design.	Hrs. 4 4 10
Unit 1 Unit 2	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision.	Hrs. 4 4
Unit 1 Unit 2 Unit 3 Unit 4	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control SystemsVision Systems	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B	Hrs. 4 4 10 4
Unit 1 Unit 2 Unit 3	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control SystemsVision SystemsRobot arm	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler	Hrs. 4 4 10
Unit 1 Unit 2 Unit 3 Unit 4	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control SystemsVision SystemsRobot arm Kinematics and	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler formation, Generalized D'Alembert equations of motion, Denavit Hartenberg convention	Hrs. 4 4 10 4
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5	Basic Concepts in Robotics Classification and Structure of Robotic System Drives and Control Systems Vision Systems Robot arm Kinematics and Dynamics	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler formation, Generalized D'Alembert equations of motion, Denavit Hartenberg convention and its applications.	Hrs. 4 4 10 4 10
Unit 1 Unit 2 Unit 3 Unit 4	Basic Concepts in RoboticsClassification and Structure of Robotic SystemDrives and Control SystemsVision SystemsRobot arm Kinematics and Dynamics Sensors and	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler formation, Generalized D'Alembert equations of motion, Denavit Hartenberg convention and its applications. Tactile sensors, proximity and range sensors, Force and torque sensors, Uses of sensors in	Hrs. 4 4 10 4
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5	Basic Concepts in Robotics Classification and Structure of Robotic System Drives and Control Systems Vision Systems Robot arm Kinematics and Dynamics	(Part A) Automation and robotics, Robot anatomy, Basic structure of robots, Resolution, Accuracy and repeatability. Point to point and continuous path systems. Control loops of robotic systems, The manipulators, The wrist motion and grippers. Hydraulic systems, Dc servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems, Robot joint control design. Vision equipment, Image processing, Concept of low level and high-level vision. Part B The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler formation, Generalized D'Alembert equations of motion, Denavit Hartenberg convention and its applications.	Hrs. 4 4 10 4 10

Text Books:

Unit 7

1. Nikku, S.B., Introduction to Robotics, Prentice-Hall of India Private Limited (2002).

2. Schilling. R. J., Fundamentals of Robotics: Analysis and Control, Prentice-Hall of India Private Limited (2006).

Branching capabilities and limitation of lead through methods.

Method of robots programming, Lead through programming methods, a robot programs

as a path in space, Motion interpolation, WAIT, SIGNAL and DELAY commands,

12

3. Criag, J., Fundamentals of Robotics: Analysis and Control, Prentice-Hall of India Private Limited (2006).

Additional Books:

Robot Programming

1. Gonzalex, R. C. and Fu, K. S., Robotics Control Sensing, Vision and Intelligence, McGraw-Hill (2004).

2. Koren, Y., Robotics for Engineers, McGraw–Hill (1985).

SUBJECT CODE: PEPE-104 SUBJECT NAME: MICRO MACHINING

	SUBJECT NAME: MICKO MACHINING	
Program	me: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester	r: 5 th	Teaching Hours: 48
Theory/I	Practical: Theory	Credits: 4
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 30%
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Ma	arks: 100	Status: Professional Elective
Addition	al Material Allowed in	ESE: Scientific Calculator
On comp	oletion of the course, the	e student will have the ability to:
CO#.	Course Outcomes CO	S
1	Demonstrate the conce	pt of Micro machining in a manufacturing unit.
2	develop in-depth know	ledge of latest technologies in micro machining like DTM, AJMM, FIB Machining etc.
3	Develop in-depth knowledge of concept of Micro Metrology.	
4	Explain the concept of	Micro-Electric Discharge and Electro Chemical Micromachining.
5	Develop skills to fabric	cate products using micro machining efficiently.
6	Apply the techniques of	f Micro machining in a manufacturing unit.

Detailed Contents:

S. No.	Title	Content details	Credit
5.110.	inte	(Part A)	Hrs.
Unit 1	Introduction	Micromachining – definition - principle of mechanical micromachining - Classification of micromachining and nanofinishing processes - Molecular dynamics simulations of machining at atomic scale. Selection of micro machining processes	6
Unit 2	Mechanical Micro Machining Processes	Abrasive Jet Micromachining - erosion mechanism - powder feeding - microstructure fabrication. Ultrasonic micromachining – basic elements - mechanism of material removal - micro-hole drilling, contour machining, micro-de-burring, machining of ceramic materials.	9
Unit 3	Diamond Turn & Electrochemical Micro Machininig	Diamond Turn Machining (DTM) - components of DTM – requirements of DTM - material removal mechanism – molecular dynamics - tool geometry. Electrochemical Micromachininig, Electrochemichal Micro Deburring, Focussed Ion Beam (FIB) Machining.	8
		Part B	
Unit 4	Micro-Electric Discharge Micromachining	Micro-electric discharge micromachining – principle - Micro EDM system development - process parameters - Analytical Modeling. Laser micromachining techniques and their applications. Focused Ion Beam machining. Electro chemical spark micromachining – mechanism - equipment. Electron beam micromachining – mechanism-process parameters - applications.	10
Unit 5	Micro fabrication	Micro fabrication - Materials for Microsystems manufacture - Substrates and Wafers, active substrate materials, silicon and silicon components. Photolithography based micro fabrication processes - Photo resist development. Additive and subtractive techniques – CVD – PVD – etching - chemical, plasma - resists removal. Large aspect ratio micro manufacturing - LIGA, Deep Reactive Ion Etching.	8
Unit 6	Micro Metrology	Micro Metrology - Scanning Electron Microscopy, optical microscopy, atomic force microscope, molecular measuring machine, Micro-CMM, Transmission electron microscope – principles - applications.	7

Text Books:

1. Introduction To Micromachining, V.K.Jain (Editor) Published By Narosa Publishers, N Ew Delhi (2009). (Second Edition)

2. Micromanufacturing Processes By V. K. Jain (Editor), Crc Press.

3. Advanced Machining Processes By V.K Jain , Allied Publishers, New Delhi.

4. Madou M. J. - 'Fundamentals of Microfabrication' - CRC Press - 2009 - 2nd Edition

5. Ran Hsu, T. R. 'MEMS & Microsystems: Design and Manufacturing' - Tata McGraw- Hill - 2002

Subject Code: PEPE-125 Subject Name: Human Engineering

		Subject Name: Human Engineering	
	nme: B.Tech. (PE)	L: 4 T: 0 P: 0	
Semeste		Teaching Hours: 48	
Theory/	Practical: Theory	Credits: 4	
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil	
Externa	l Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 100	Status: Professional Elective	
Addition	nal Material Allowed in	n ESE: Scientific Calculator	
		ne student will have the ability to:	
CO#.		Course Outcomes COS	
	Student will be able to a	alysis the psychology of human behavior as it relates to workplace safety.	
		lentify ergonomic hazards, recommend appropriate controls.	
		nalysis the anatomical and mechanical structure of the human body and anthropometry	
	echniques available to e		
		nalysis the concept of the office workstation & ergonomic design of the office workstation	on
		vestigate human senses in general and special focus on the vision sense and the auditory	
		nalysis the work related disorders & industrial safety aspects.	, sense.
	Contents	angono are work related abordero de industriar surery aspecto.	
Sr. No	Title	Content Detail	Credit
51.110	Inte	Content Detan	Hours
		Part A	110013
Unit 1	Ergonomics	Introduction to Ergonomics, Human Factors and Ergonomics, Application and	3
Unit I	Engonomics	History of Ergonomics, Effectiveness and Cost-Effectiveness of Ergonomics, micro-	5
		and macro- ergonomics.	
Unit 2	Systems of the	Anthropology, Anatomy of Spine and Pelvis Related to Posture, Biomechanics,	6
Unit 2	Human Body	Muscular System, Ergonomics and the Musculoskeletal System, Costs of Back	U
	Human Douy	Injuries	
Unit 3	Muscular Work &	Types of Muscular Work, Muscular Fatigue, Types of Muscle Contractions,	6
Unit 5	Nervous Control of	Measurement of Muscular Strength	U
	Movements	weasurement of wascular Strength	
Unit 4	Anthropometry	Introduction, Terminology, Myth of the Average Human, Principles of Universal	6
Unit 4	Antin opometry	Design, Anthropometric Measurements	U
		Part B	
Unit 5	Design of Work	Work Design Analysis, Designing for Hand Use, Types of Injuries and Disorders,	6
Unit 5	places & Hand	Theories of healthy standing and sitting, free posturing, ergonomics design of the	U
	Tools	office computer workstation, Lifting Guidelines,	
Unit 6	Work-Related	Types of Work-Related MSD's, Task-related Factors, Personal Risk Factors, Impact	6
Cint V	Disorders	on Industry, Ergonomic Program for WMSD's, Industrial Environmental Disorders	v
	2 1001 401 5	and Climate and Environmental Disorders, Workplace Stress, Mental	
		Fatigue/Shiftwork Fatigue	
Unit 7	Industrial Safety &	Concept of Safety, Accidents & Hazards, Causes & effects of Industrial accidents,	5
	Ergonomics	Cost of Accidents, Impact of Accidents on employees, Physical Hazards, Chemical	~
		Hazards, Biological & Ergonomically Hazards, Occupational Health & Toxicology,	
		Occupational Physiology.	
Unit 8	Information	Mental Workload Measurement, Primary and Secondary Task Performance,	5
	Ergonomics,	Controls and Displays (Types), Control Layout and Design	-
	Controls, &		
	Displays		
Unit 9	Human Senses	Body Sensors, Vision Sense, Color Theories, Auditory Sense, Smelling Sense,	5
Sint y	Aumun Densto	Tasting Sense, Touching Sense, Human Body Interaction with Environment,	5
		Thermo regulation of Human Body, Working in Polluted Air, Working at High	
		Altitude, Effect of Vibration on Human Body	
Text Bo			

Text Books:

- 1. Bush, P. M. "Ergonomics, Foundational Principles, Applications, and Technologies" CRC Press-Taylor & Francis Group 2011
- 2. Konz S. A. & Johnson S., "Work Design: Industrial Ergonomics". 6th Edition, Holcomb Hathaway Publishers, 2004
- 3. Konz SA & Johnson S. "Work Design: Occupational Ergonomics". 7th Edition, Holcomb Hathaway Publishers, 2008
- 4. Bhattacharya and McGlothlin, "Occupational Ergonomics Theory and Applications", Second Edition CRC Press-Taylor & Francis Group 2012

- 5. B. M. Pulat "Fundamentals of Industrial Ergonomics" Waveland Pr. Inc. 1997
- 6. M. I. Khan "Industrial Ergonomics" by PHI Publisher 2010 2nd Edition
- 7. Robert Bridger "Introduction to Human Factors and Ergonomics" CRC Press (2017)

- 1. Phillips, C. A. "Human Factors Engineering" 1st edition, Wiley 1999
- 2. Mark R. L. & Steven J. L. "Introduction to Human Factors and Ergonomics for Engineers" CRC Press 2012
- 3. Bridger, Robert S. "Introduction to Ergonomics", 3rd edition, CRC Press, Taylor & Francis Group 2009
- 4. Stack, T., Ostrom, L. T. & Cheryl A. W. "Occupational Ergonomics: A Practical Approach" Wiley, 1 ed. 2016
- 5. Reese C. D. "Occupational Health and Safety Management: A Practical Approach", Third Edition 3rd Edition CRC Press 3 edition 2015

Subject Code: PEPE-126 Subject Name: Agile manufacturing

Programme: B.Tech. (PE)	L: 4 T: 0 P: 0
Semester: 5	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Professional Elective

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes COS	
1	Understand conceptual frame work of agile manufacturing environment.	
2	Get insight into Enterprise design process, apply interdisciplinary design concepts.	
3	Develop characteristic difference between lean manufacturing and agile manufacturing and appreciate benefits that can be	
	derived by adopting newer manufacturing strategies.	
4	Student will be able to implement the agile practices and technology in an industry.	
5	Student will be able to measure the performance of a system.	
6	Student will be able to create a learning factory for future challenges.	
Detai	Detailed Contents	

Sr. No	Title	Content Detail	Credit Hours
		Part A	
Unit 1	The Agile Production System	Agile Manufacturing Production System - Production, Production Support, Production Planning and Control, Quality Assurance, Purchasing, Maintenance, Overview of Production Support, Business Operations, Engineering, Marketing, Human Resource, Finance and Accounting.	5
Unit 2	Agile Practices	Agile practice for product development - Manufacturing Agile Practices - understanding the value of investing in people, removing inappropriate fear from the shop floor - not sacrificing agility for perfectionism.	5
Unit 3	Implementing Technology to Enhance Agility	Implementing New Technology - Reasons - Guidelines Preparation for Technology Implementation - A Checklist, Technology Applications that enhance Agility - Agile Technology Make-or-Buy Decisions.	6
Unit 4	Strategic Direction	Key Concepts, Strategic Thinking, Strategic Learning Approach to creating Strategy - Establishing the Strategy Team, Collecting Strategic Information, Creating Strategic Scenarios, Developing Strategy Options, Selecting the best Strategy Option, Testing and Refining the Strategy, Implementing the Strategy, Strategy Partnering, Conclusion.	6
		Part B	
Unit 5	Performance Measures	Historical view of performance measurement, Dysfunctional Impacts of Cost- Accounting Performance Measures, Customer-Centered Paradigm, Developing Customer-Based Performance Measures.	6
Unit 6	Creating the Learning Factory	Imperative for success, factory becoming a learning factory, building a road map for becoming a learning factory - Core Capabilities, Guiding Vision, Leadership That Fits, Ownership And Commitment, Pushing The Envelope, Prototypes, Integration, Learning Challenges for learning Manufacturing Business, conclusion.	5
Unit 7	Management in The Agile Organization	Old management styles, role of manger in an Agile Organization - Vision Champion, Team Leader, Coach, Business Analyzer, supporting the new culture - Performance Appraisal Systems, Selection Systems, Reward and Recognition Systems, Organizational Measurement, Organizational Learning Processes.	5
Unit 8	Application of IT/IS Concepts In Agile Manufacturing	Management of complexities and information flow, approaches, applications of multimedia to improve agility in manufacturing, system concepts. Agile Supply Chain Management: Principles, IT/IS concepts in supply chain management, enterprise integration and management in agile manufacturing, concepts, Agility, Adaptability and learners – comparison of concepts	5
Unit 9 Text Bo	Computer Control Of Agile Manufacturing	CAPP for Agile Manufacturing, Aggregate capacity planning and production line design / redesign in Agile manufacturing, Cellular manufacturing, concepts. Corporate Knowledge Management In Agile Manufacturing	5

Text Books:

1. Gunasekaran A, "Agile Manufacturing, 21st Strategy Competitiveness Strategy", Elsevier Publications, 2001.

- 2. Montgomery J C and Levine L O, "The Transition to Agile Manufacturing Staying Flexible for Competitive Advantage", ASQC Quality Press, Wisconsin, 1995.
- 3. Devadasan S R, Mohan Sivakumar V, Murugesh R and Shalij P R, "Lean and Agile Manufacturing: Theoretical, Practical and Research Futurities", Prentice Hall of India (PHI) Private Limited, New Delhi, India, 2012
- 4. Poul T Kidd "Agile Manufacturing- Forging Mew Frontiers", Addison Wesley- Publication 1994.
- 5. David M Anderson and B Joseph Pine "Agile Development for Mass Customization", Irwin Professional Publishing, Chicago, USA, 1997.

- 1. Goldman S L, Nagal R N and Preiss K, "Agile Competitors and Virtual Organizations", Van Nostrand Reinhold, 1995. 4.
- 2. Brian H Maskell, "Software and the Agile Manufacturer, Computer Systems and World Class Manufacturing, Productivity Press, 1993
- 3. Paul T Kidd "Concurrent Engineering" Addison Wesley Publication -1994
- 4. Paul T Kidd "World Class Manufacturing" Addition Wesley Pub 1994

SUBJECT CODE: PEPE-127 SUBJECT NAME: TECHNOLOGY MANAGEMENT

Programme: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 5 th	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Professional Elective
Additional Matarial Allowed in	ESE: Scientific Coloulator

Additional Material Allowed in ESE: Scientific Calculator On completion of the course, the student will have the ability to.

On comp	Detion of the course, the student will have the ability to:
CO#.	Course Outcomes COS
1	Demonstrate and apply the concept Technology Management in an organization.
2	Develop in-depth knowledge of Technology Forecasting, Development, Acquisition and Transfer. Technology
	Absorption and Diffusion and Assessment.
3	Develop in-depth knowledge of Technology Absorption and Diffusion and Assessment.
4	Explain the concept of laws regarding technology.
5	Develop in-depth knowledge of government Technology policies.
6	Explain the concept of technology developments
Detailed	Contentes

Detailed Contents:

S. No.	Title	Content details	Credit
			Hrs.
		Part A	
Unit 1	Technology Management	Various aspects and Issues, Strategic Considerations, Technological change and Inn ovation, Impact of Technological Change on Employment and Productivity, Social consequences.	10
Unit 2	Technology Assessment	Technology Forecasting, Technology Development, Acquisition and Transfer. Technology Absorption and Diffusion, Evaluation/Assessment of competing Technologies, Foreign Diffusion, Collaboration and Strategic Technological Alliances.	14
	·	Part B	
Unit 3	Important Laws	Law regarding protection of trade intellectual property rights, patents, trademarks, TRIPS and W.T.O its impact on Indian Economy.	10
Unit 4	Technology Development	Technological environment in India - Technology policy, role of various government, organizations such as DST, CSIR in development and dissemination of technology. Technology development at organization level, role of information system, quality systems and market feedback.	14

Text Books:

1. Sharif Nawaz, "Management of Technology Transfer and Technology", APCTT Bangalore. 1977.

2. Fredruck Betz, "Managing Technology", Prentice Hall, 1987.

Mauk Dudgson, "Technology Strategy and the Firm", Longman Publications, 1989.
 UN-ESCAP, "Technology for Development", ESCAP Secretariat,

SUBJECT CODE: PEPE-128 SUBJECT NAME: MARKETING MANAGEMENT

SUDJECT NAME; MARKETING MANAGEMENT		
Program	me: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester	: 5 th	Teaching Hours: 48
Theory/P	ractical: Theory	Credits: 4
Internal I	Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Ma	rks: 100	Status: Professional Elective
Addition	Additional Material Allowed in ESE: Scientific Calculator	
On comp	On completion of the course, the student will have the ability to:	
CO#.	Course Outcomes COS	
1	Demonstrate and apply the concept Marketing Management.	
2	Develop in-depth knowledge of Marketing strategies formulation.	
3	Develop in-depth knowledge of consumer and industrial markets.	
4	Explain the concept of marketing mix decisions.	
5 Develop in-depth knowledge of buyer behaviors.		ledge of buyer behaviors.
6	Explain the concept of marketing research and trends.	
D-4-9-1	Detailed Contenter	

Detailed Contents:

S. No.	Title	Content details	Credit Hrs.
		Part A	
Unit 1	Introduction	Marketing – Definitions - Conceptual frame work – Marketing environment: Internal and External - Marketing interface with other functional areas – Production, Finance, Human Relations Management, Information System. Marketing in global environment – Prospects and Challenges.	10
Unit 2	Marketing Strategy	Marketing strategy formulations – Key Drivers of Marketing Strategies - Strategies for Industrial Marketing – Consumer Marketing — Services marketing – Competitor analysis - Analysis of consumer and industrial markets – Strategic Marketing Mix components.	10
		Part B	-
Unit 3	Marketing Mix Decisions	Product planning and development – Product life cycle – New product Development and Management – Market Segmentation – Targeting and Positioning – Channel Management – Advertising and sales promotions – Pricing Objectives, Policies and methods.	9
Unit 4	Buyer Behaviour	Understanding industrial and individual buyer behavior - Influencing factors – Buyer Behaviour Models – Online buyer behaviour - Building and measuring customer satisfaction – Customer relationships management – Customer acquisition, Retaining, Defection.	10
Unit 5	Marketing Research & Trends In Marketing	Marketing Information System – Research Process – Concepts and applications : Product – Advertising – Promotion – Consumer Behaviour – Retail research – Customer driven organizations - Cause related marketing - Ethics in marketing –Online marketing trends	9

Text Books:

Kortler Philip and Keller K.L., "Marketing Management", PHI 14th Edition, 2012.
 Chandrasekar K.S., "Marketing management-Text and Cases", Tata McGraw Hill-1st Ed., 2010.
 Baines P., Fill C. and Page K., "Marketing", Oxford University Press, 2nd Edition, 2011.

- 3. Micheal R.C. and Masaaki K., "Marketing Management", Vikas Thomson Learning, 2000.
- 4. Duglas, J. Darymple,, "Marketing Management", John Wiley & Sons, 2008.

SUBJECT CODE: PEPE-149 SUBJECT NAME: COMPOSITE MATERIALS

	SUBJECT NAME: COMPOSITE MATERIALS		
Programme: B. Tech. (PE)		L: 4 T: 0 P: 0	
Semester	r: 5 th	Teaching Hours: 48	
Theory/I	Practical: Theory	Credits: 4	
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External	Marks: 60	Duration of End Semester Exam (ESE): 3hr	
Total Ma	arks: 100	Status: Professional Elective	
Addition	al Material Allowed in I	ESE: Scientific Calculator	
On comp	pletion of the course, the	student will have the ability to:	
CO#.	Course Outcomes COS		
1	Know the applications of composite materials.		
2	Identify various constituents of composite materials and their characteristics.		
3	Suggest and use standard methods for determining mechanical properties of different types of composite materials.		
4	Use various techniques for processing of composite materials.		
5	Asses the applicability and selection of a composite material for a specific application		
6	Self-directed learning,	incorporating researching properties of composite materials.	

Detailed Contents:

S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction	History of composite materials, classification of composite materials, properties of composites compared to conventional materials, applications of composites	6
Unit 2	Matrices and Reinforcements	Introduction to different types of matrices, difference between thermosetting and thermoplastic matrices, chemical structure and characteristic features of polymer matrices, curing system, role of matrix in continuous fibre composites, introduction to different types of reinforcements, characteristic features and role of fibres, particles, whiskers as reinforcing agents	10
Unit 3	Basic Concepts of Composite Materials	Stress distribution in fibre and matrix, rule of mixtures, analysis of uniaxial tensile stress- strain curve of unidirectional continuous and short fibre composites, estimation of minimum and critical amount of reinforcement, experimental determination of mechanical properties (compressive, flexural and shear) of composite materials using standard test procedures, failure theories of polymer matrix composites.	10
		Part B	
Unit 4	Processing of Composite Materials	Processing techniques of polymeric matrix composites (PMCs), process mechanism, capability and application areas of various techniques, hand lay-up, autoclaving, filament winding, pultrusion, compression molding, pre-pegging, sheet molding compounds, primary processing techniques for ceramic and metal matrix composites (CMCs and MMCs), stir and squeeze casting, powder metallurgy, liquid infiltration process	14
Unit 5	Secondary Processing of Composite Materials	Machining, welding, adhesive joining and mechanical fastening of composite materials (as relevant and specific for PMCs, CMCs and MMCs).	8

Text Books:

1. Mathews F.L and Rawlings R.D, "Composite Materials: Engineering and Science", Woodhead Publishing, ISBN: 9781855734739, 1st Edition, 1999.

- 2. Hull D. and Clyne T.W., "An Introduction to Composite Materials", 2nd Ed., Cambridge University Press, 2013.
- Chawla K.K., "Composite Materials: Science and Engineering" 3rd Ed., Springer, 2012
 Chawla K.K., "Ceramic Matrix Composites", 2nd Ed., Springer, 2003

- 1. Chawla N. Chawla K.K., "Metal Matrix Composites", 2nd Ed. Springer, 2013.
- 2. Shojiro O., "Mechanical Properties of Metallic Composites", Marcel Dekker, 2002.
- 3. Deborah D.L. Chung, "Composite Materials: Science and Applications", 2nd Ed. Springer, 2010.

SUBJECT CODE: PEPE-150 SUBJECT NAME: MATERIAL TESTING & CHARACTERIZATION

D		SUBJECT NAME: MATERIAL TESTING & CHARACTERIZATION		
	me: B. Tech. (PE)	L: 3 T: 0 P: 0		
Semester: 5 th		Teaching Hours: 48		
Theory/Practical: Theory Internal Marks: 40		Credits: 4		
		Percentage of Numerical/Design/Programming Problems: 30%		
	Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Ma		Status: Professional Elective		
Addition	al Material Allow	ed in ESE: Scientific Calculator		
		se, the student will have the ability to:		
CO#.	Course Outcom			
1		materials characterization techniques.		
2		principle and operation of characterization equipments and the adjustment of operation variables to	obtain	
	good images / re			
3		terization tool for specific application		
4		nciple and operation of different characterization tools such as optical microscope, Scanning e	lectron	
		transmission electron microscope		
5		acterization results by various equipment		
6	relate fundament	al of physics to the basic operation of the equipment		
Detailed	Contents:			
S. No.	Title	Content details	Credit	
			Hrs.	
		Part A		
Unit 1	Macro &	Macro And Micro Examination Of Metals Specimen Preparation Qualitative And Quantitative	10	
	Micro	Examination Optical,		
	Examination			
	Of Metals			
Unit 2	Optical	Optical Microscopy - Introduction, Optical principles, Instrumentation, Specimen preparation-	10	
	Microscopy	metallographic principles, Imaging Modes, Applications, Limitations, Transmission Electron		
		Microscopy (TEM) - Introduction, Instrumentation, Specimen preparation-pre thinning, final		
		thinning, Image modes- mass density contrast, diffraction contrast, phase contrast,		
		Applications, Limitations		
Unit 3	Scanning	Scanning Electron Microscopy (SEM) - Introduction, Instrumentation, Contrast formation,		
	Electron	Operational variables, Specimen preparation, imaging modes, Applications, Limitations, X-		
	Microscopy	Ray Diffraction (XRD) - Introduction, Basic principles of diffraction, X - ray generation,		
T T 1 4		Instrumentation, Types of analysis, Data collection for analysis, Applications, Limitations		
Unit 4	Magnetic	Magnetic Resonance, NMR, Analysis Of The Phenomenon ,Experimental Method , NMR		
	Resonance	Spectra, Applications, NQR, Analysis Of The Phenomenon, NQR Spectra, Applications To		
		Study Of Deformed Metals And Crystalline Electric Field, ESR, Phenomenon, Experimental		
		study – ESR spectra and Applications.		
TI	Coor	Part B Scanning Ducks Misroscony (SDM) & Atomic Force Misroscony (AFM) Introduction	0	
Unit 5	Scanning Brobo &	Scanning Probe Microscopy (SPM) & Atomic Force Microscopy (AFM), Introduction, Instrumentation Scanning Tunneling Microscopy Paging, probe ting, working environment	9	
	Probe & Atomic Force	Instrumentation, Scanning Tunneling Microscopy, Basics, probe tips, working environment, operational modes, Applications, Limitations, Electron Probe Micro Analyzer (EPMA),		
	Atomic Force Microscopy	Introduction, Sample preparation, Working procedure, Applications, Limitations		
Unit 6	X, Ray	X, Ray Spectroscopy for Elemental Analysis, Introduction, Characteristics of X-rays, X, ray	10	
Omt 0	A, Kay Spectroscopy	Fluorescence Spectrometry, Wavelength Dispersive Spectroscopy, Instrumentation, Working	10	
	for Elemental	procedure, Applications, Limitations, Energy Dispersive Spectroscopy, Instrumentation, working		
	Analysis	Working procedure, Applications, Limitations, Energy Dispersive Spectroscopy , instrumentation,		
Unit 7	Thermal	Thermal Analysis, Instrumentation, experimental parameters, Different types used for analysis,	9	
omt /	Analysis	Differential thermal analysis, Differential Scanning Calorimetry, Thermogravimetry,		
	1111119515	Dilatometry, Dynamic mechanical analysis, Basic principles, Instrumentation, working		
		principles, Applications, Limitations.		
Unit 8	X, Ray			
CHILD	diffraction	Structure Determination. Atomic Scattering Factor, Geometrical Structure Factor, Experimental		
	annachun	Methods. Laue, Rotating Crystal And Powder Photograph Methods, Estimation Of Stress,		
		Texture And Other Defects, Electron Diffraction. Neutron Diffraction.		
Text Boo	l Isas		1	

Text Books:

Thermal Analysis of Materials by Robert F. Speyer, Marcel Dekker Inc., New York, 1994.
 Materials Characterization: Introduction to Microscopic and Spectroscopic Methods by Y. Leng (Jun 2, 2008)

- 3. Materials Characterization Techniques [Hardcover] Sam Zhang (Author), Lin Li (Author), Ashok Kumar (Author)
- 4. Surface Analysis: The Principal Techniques [Paperback] John C. Vickerman (Editor), Ian Gilmore (Editor)

- 1. V. T. Cherapin and A. K. Mallik: Experimental Techniques in Physical Metallurgy, Asia Publishing House, 1967.
- 2. ASM Handbook: Materials Characterization, ASM International, 2008.

SUBJECT CODE: PEPE-151 SUBJECT NAME: SCIENCE OF ENGINEERING & MATERIALS

	SUBJECT NAME: SCIENCE OF ENGINEERING & MATERIALS			
Programme: B. Tech. (PE)		L: 4 T: 0 P: 0		
Semester: 6		Teaching Hours: 48		
Theory/I	Practical: Theory	Credits: 4		
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil		
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr	Duration of End Semester Exam(ESE): 3hr	
Total Ma	arks: 100	Status: Professional Elective		
Addition	nal Material Allowed in	n ESE: Scientific Calculator		
		he student will have the ability to:		
CO#.	Course Outcomes C			
1		Mechanical Material Properties in designing specific products and experiments		
2		rial for the manufacturing of better human friendly product		
3		ceramics properties in designing specific products and experiments		
4	Able to make better u	tilization of electrical and electronics materials for designing new products		
5	Able to use Nano Ma	terials for the betterment of human race		
6	Able to know about the	he safety and dangers of Nuclear Materials		
Detailed	Contents:			
S.No.	Title	Content details	Credit	
		(Part A)	Hrs.	
Unit 1	Introduction to	Introduction Of Metals And Mechanical Materials, Criteria Of Selection Of Materials Like		
	Metals	Properties, Cost, Manufacturing Process, Availability, Legal And Safety Factors. Different		
		Metals used in Manufacturing Industries Copper Aluminum Steel Iron		
Unit 2	Properties of	Mechanical, Thermal, Electrical and Chemical properties of different Metals like Metallic		
	Metal	luster, Electrical conductivity, Thermal conductivity, Malleability and ductility, Melting		
		point, Hardness, Strength, Density.		
Unit 3	High	Introduction to High Temperature Materials, Mechanical, Thermal, Electrical and		
	Temperature	Chemical properties of High Temperature Metals		
	Metals			
Unit 4	Metallic Alloys	Introduction of Metallic Alloys, Types of Metallic Alloys Properties of Metallic Alloys		
		Manufacturing of Metallic Alloys, common metallic alloys		
Part B				
Unit 5	Corrosion	Definition of Corrosion, Types of Corrosions, Factors Affecting Corrosions, Prevention of		
		Corrosions, Conditions for Corrosions of different Metals, Corrosion Testing and		
		Monitoring, General concepts, fracture characteristics revealed by microscopy, factors		
		Monitoring, General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue		
		Monitoring, General concepts, fracture characteristics revealed by microscopy, factors		

Unit 6 Wear Types of wear, analyzing wear failure. Wear failure, Abrasive and adhesive wear, fretting wear, Wear failures-fatigue, Life cycle of a metal, Unit 7 Metallurgical Failure Analysis Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristics of ductile and brittle fracture. Overview of fracture mechanics, characteristics of ductile and brittle fracture.

Text Books:

- 1. Bruce A. Rogers "The Nature of Metals" MIT Press 2020
- 2. Mark Anthony Benvenuto "Metals and Alloys Industrial Applications" De Gruyter Textbook 2016
- 3. Valim Levitin "High Temperature Strain of Metals and Alloys: Physical Fundamentals" Wiley-VCH 2006
- 4. Sharma C.P. "Engineering Materials-properties and Applications of Metal and Alloys". Prentice-Hall of India Pvt.Ltd 2004
- 5. Denise Walker "Metals and Non-metals" Evans Brothers, 2007

- 1. William D. Callister Jr. and David G. Rethwisch "Materials Science and Engineering" John Wiley & Sons, 9th Ed. 2014
- D.R.H. Jones and Michael F. Ashby "Engineering Materials 1: an Introduction to Properties, Applications and Design" Butterworth-Heinemann, 3 ed. 2005

SUBJECT CODE: PEPE-151 BJECT NAME: Deformation & Defects of Material

	SUBJECT NAME: Deformation & Defects of Materials		
Progran	nme: B. Tech. (PE)	L: 4 T: 0 P: 0	
Semeste	er: 6	Teaching Hours: 48	
Theory/	Practical: Theory	Credits: 4	
Internal	l Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil	
Externa	l Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total M	arks: 100	Status: Professional Elective	
Addition	Additional Material Allowed in ESE: Scientific Calculator		
On com	pletion of the course, the	student will have the ability to:	
CO#.	Course Outcomes CO	S	
1	Will be able find plastic deformation in metals and alloys		
2	Will be able find and remove point and line defects in materials		
3	Will be able find and remove Planar defects in materials		
4	Will be able find the causes of fatigue in materials		
5	Will be able find and remove dislocation defects in materials		
6	Will be able execute tes	sts on materials to find the defects	

Detailed Contents:

S.No.	Title	Content details	Credit
Unit 1	Introduction:	(Part A) Scope Of The Subject, Elastic, Plastic, And Anelastic Deformation. Constitutive Equations	Hrs. 5
Unit I	Introduction:	In Elasticity For Isotropic And Anisotropic Materials, Strain Energy, Elastic Stiffness And	5
		Compliance Tensor, Crystal Structure And Elastic Constants.	
Unit 2	Defects	Types of Defects in Metals, alloys and composites, Schottky Defects, Frenkel Defect,	6
Unit 2	Defects	Impurity Defects, Non- stoichiometric Defects, Metal Deficiency Defect, Defects in	0
		Elemental Solids and Ionic Compounds, Defect Classes, Point Defects, Kröger-Vink Notatio	
Unit 3	Plastic	Critical resolved shear stress. Defects in crystalline materials Point defects and line defects.	7
Unit 5	Deformation	The concept of dislocation – Edge dislocation and screw dislocation. Interaction between	1
	in Metals and	dislocation, sessile dislocation, glissile dislocation, dislocation climb, Jogs, Forces on	
	Alloys:	dislocations, sessile dislocation, grissile dislocation, dislocation ening, sogs, rolees on dislocations Energy of a dislocation. Frank Reed source, slip and twinning.	
Unit 4	Point & Line	Equilibrium Point Defect Concentrations, Intrinsic Point Defects, Extrinsic Point Defects,	7
Unit 4	Defects	Diffusion, Impurity Diffusion, Description Of Dislocations, Elements Of Elastic Theory,	,
	Derects	Stress Field Of A Dislocation, Strain Energy Of A Dislocation, Line Tension, Forces On	
		Dislocations, Forces Between Dislocations,	
		Dislocation Reactions, Dislocations In Fcc Crystals, Dislocations In Other Crystal	
		Systems, Dislocation Multiplication,	
		Strength Of Crystalline Solids	
Unit 5	Planar	Interface Defects, Twin Boundaries, Stacking Faults, Grain Boundaries, Interface	8
	Defects	Boundaries, Surface Defects:, Description Of Surface Structure, Surface Crystallography,	
		Surface Relaxation And Reconstruction, Crystal Growth,	
Unit 6	Fracture	Mechanisms Of Ductile And Brittle Fracture, Fracture In Creep And Stress Corrosion	8
		Conditions, Fractography. Elementary theories of fracture Griffith Theory Of Brittle	
		Fracture. Concepts Of Stress Concentrations And Stress Intensity Factors, Rack Tip Plastic	
		Zone. J And CTOD Parameters. Ductile To Brittle Transition Behaviour. Notch sensitivity.	
		Hardness Test: Methods of hardness testing Brinells, Vickers, Rockwell, Rockwell	
		superficial, Shore and Poldi methods, Microhardness test, relationship between hardness and	
		other mechanical properties.	
Unit 7	Tension Test:	Mechanism of elastic action, linear elastic properties. Engineering stress and Engineering	8
		strain, True stress-strain curve. Tension Test and tensile properties, conditions for necking,	
		effect of temperature and strain rate on tensile properties. Compression Test: Elastic and in	
		elastic action in compression, compression Test. Impact Test: Notched bar impact test and	
		its significance, Charpy and Izod Tests, significance of transition temperature curve,	
		Metallurgical factors affecting the transition temperature, temper embrittlement. DBTT	
		curve and its importance. Fracture toughness testing – COD and CTOD tests.	

Text Books:

- 1. D. Hull and D. J. Bacon, Introduction to Dislocations, 3rd Edition, Pergamon Press, 1984
- 2. J. Weertman and J. R Weertman, Elementary Dislocation Theory, Oxford, 1992.
- 3. P. Shewmon, Diffusion in Solids, A Publication of The Minerals, Metals & Materials
- 4. Society, 1989.

- 5. A. Kelly and G. W. Groves, Crystallography and Crystal Defects, Addison-Wesley, 2000.
- 6. Y. M. Chang, D. Birnie, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, John Wiley & Sons, Inc., 1996

- 1. J. P. Hirth, Theory of Dislocations, 2nd edition, A Wiley-Interscience Publication, 1982.
- 2. Mechanical Metallurgy GE Dieter
- 3. Mechanical Behavior of Material A. H. Courtney

SUBJECT CODE: PEPE,106 SUBJECT NAME: MAINTENANCE AND RELIABILITY ENGINEERING

D	SUBJECT NAME: MAINTENANCE AND RELIABILITY ENGINEERING			
Programme: B. Tech. (PE) Semester: 6 th		L: 3 T: 0 P: 0		
Theory/Practical: Theory		Teaching Hours: 48 Credits: 4		
Interrol	Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%		
	Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Ma		Status: Professional Elective		
		in ESE: Scientific Calculator		
		the student will have the ability to:		
CO#.	Course Outcomes			
1		pply the concept of Maintenance.		
2		nowledge of performance and cost.		
3		tenance measurement methods to enhance the performance.		
4	Explain the concept			
5		bility hazard rate and failure density function models.		
6		nowledge on various aspects of reliability calculations for maintained and stand, by systems		
	Contents:			
S. No.	Title	Content details	Credit	
		(Part A)	Hrs.	
		Definition of maintenance, Role and scope of maintenance in total organizational context.		
	Types of	Objectives and characteristics of maintenance, Centralized vs Decentralized maintenance.	40	
Unit 1	Maintenance	Corrective, planned, preventive and predictive maintenance. Factors affecting maintenance,	10	
		Opportunistic maintenance. Measurement of maintenance work: Mean time to repair,		
		Median time to repair, Mean system down time, Mean time to restore.		
	Rating of	Mistan Mistan Mistan Mistan		
Unit 2	maintenance	Maintenance performance indices. Maintenance cost budgets, Maintenance planning and	7	
	work and	scheduling, MIS in maintenance		
	allowances			
Unit 3	Measurement of maintenance	Measurement of maintenance effectiveness and maintenance audit	5	
	maintenance	Dout D		
		Part B Definition of Reliability, Availability and Maintainability. Random events, Frequency		
	Degie concenta	distributions and measures of location, Random variables with examples and probability		
Unit 4	Basic concepts of Reliability	distributions. Failure data, failure modes: Mean time to failure, MTBF, Failure analysis,	10	
	of Kenadinty	Fault tree analysis, FMECA		
	Reliability in	Reliability function, Hazard rate function, PDF, CDF. Hazard models and bath tub curve:		
	terms of hazard	Constant, linear and non,linear hazard models. Applicability of Welbull distribution.		
Unit 5	rate and failure	Reliability calculation: Series, parallel and parallel, series systems, Low level and High level	10	
	density function	redundancy		
	Reliability			
	calculations for			
Unit 6	maintained and	Markov analysis, Load sharing system, standby systems, Three component standby systems.	6	
	stand,by systems			
Text Boo				

Text Books:

1. Kelly A, "Maintenance Planning and Control", Buttersworth & Co., 1984.

- 2. Carter A. D. S., "Mechanical reliability", Macmillan, 1987.
- 3. Leonard A Doty, "Reliability for the Technologies", Industrial Press Inc, 2005.
- 4. Dhillon B.S. and Singh Chanan "Engineering reliability: new techniques and applications", Wiley, 1981

- 1. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.
- 2. Krishnan G., "Maintenance and Spare parts Management", Prentice Hall, 1991.

SUBJECT CODE: PEPE-107 SUBJECT NAME: STATISTICS AND NUMERICAL ANALYSIS

	SUBJECT NAME: STATISTICS AND NUMERICAL ANALYSIS		
Program	me: B. Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 5 th /6 th		Teaching Hours: 48	
	ractical: Theory	Credits: 4	
Internal I	Marks: 40	Percentage of Numerical/Design/Programming Problems: 20%	
External	Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Ma	rks: 100	Status: Professional Elective	
Additiona	al Material Allowed	in ESE: Scientific Calculator	
On comp	letion of the course,	the student will have the ability to:	
CO#.	Course Outcomes	COS	
1		y the knowledge of Sampling Theory in daily life problems	
2		y the knowledge of ANOVA in solving statistical problems	
3		k the solutions by using Hypothesis method	
4		y design of experiments in practical experimentations	
5		y the knowledge of Regression Analysis to find the solutions of numerical problems	
6	Will be able to appl	y the knowledge of Runga Kutta and Newton Rapson Method in solving numerical problems	
Detailed			
S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction,	Descriptive and Inferential Statistics Types of measurements Descriptive Statistics(Using	6
	Descriptive	Graphs) Descriptive Statistics(Using Numbers) Measures of location, variability, and	
T T 1 / 0	Statistics	relative standing	_
Unit 2	Probability And	Probabilities, Distributions, and Decision Making Applications, and Rules Conditional probability Discrete Distributions(Binomial, Poisson, Hypergeometric, Geometric)	7
	Sampling Theory	probability Discrete Distributions(Binomial, Poisson, Hypergeometric, Geometric) Continuous distributions Normal and Standard Normal distributions Sampling Distributions	
		Sampling distributions roomal and standard Normal distributions Sampling Distributions	
		theory	
Unit 3	Testing Of	Sampling distributions – Estimation of parameters – Statistical hypothesis – Large sample	7
cint c	Hypothesis	tests based on Normal distribution for single mean and difference of means -Tests based on	'
	11,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	t, Chi-square and F distributions for mean, variance and proportion – Contingency table	
		(test for independent) -Goodness of fit.	
Unit 4	Design Of	One way and two way classifications Completely randomized design Randomized block	5
	Experiments	design Latin square design -factorial design	
		Part B	
Unit 5	Two-Sample	Comparing Two Population Means (Confidence Intervals) Comparing Three or More	7
	Tests And	Population Means (ANOVA) Dependent and Independent populations Analysis of	
	ANOVA	Variance Bonferroni Multiple Comparisons	
Unit 6	Regression	Simple and Multiple Linear Regression Relationship between two(simple), three or	8
	Analysis	more(multiple) variables Model estimation Model Inference model assumptions model	
		validation: t-Tests R2 analysis of variance model validation: global F test Model Checking	
		Error Distribution: Zero Mean, Normality, Independence heteroscedascity (non-constant variance) Multicollinearity Effect of outliers Model Use Description, Estimation and	
		Prediction Model Building variable selection: R2, MSE general procedures(STEPWISE)	
		model comparisons Using Qualitative Independent Variables Caveat (Causality)	
Unit7	Numerical	Errors and significant digits, Roots of algebraic equations Bisection method, secant method,	8
Omt/	methods	Newton Raphson method, Graff's root, squaring method, Iterated synthetic division with	0
		quadratic factors method for finding complex roots, solutions of systems of equations	
		(Gauss elimination, Gauss Jordan, and Partition method for linear system of equations,	
		power method for partition, method for linear system of equations, power method for	
		finding eigen values), Forward, backward , central and Divided differences, Newton's	
		formula of interpolation for equal and unequal intervals. Lagrange's interpolation formula,	
		Stirling's and Bessell's formula,	
Unit 8	(Differential &	Numerical differentiation, Numerical Integration :, Trapezoidal, Simpson's rule and	
	Integration	Gaussian integration (only formula applications) Differential equations and their solutions.	
	Equations)	Numerical methods for ordinary differential equations (Picard method, Taylor series	
		method, Euler's method, Ranga Kutta Method, Predictor, corrector method, Adams,	
	20.	Bashforth method.	

Text Books:

1. S.S.Sastry, "Introductory methods of numerical analysis", Prentice Hall of India.

2. John P. Kennedy Thomas Y, "Statistical methods for Engineers", Crowell Co.

- 3. B.S. Grewal, "Elementary Numerical Methods", Khanna Publication New Delhi.
- 4. Johnson. R.A., and Gupta. C.B., "Miller and Freund"s Probability and Statistics for Engineers", 11th Edition, Pearson Education, Asia, 2011.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.
- 6. Spiegel. M.R., Schiller. J., and Srinivasan. R.A., "Schaum"s Outlines on Probability and Statistics", Tata McGraw Hill Edition, 2004.
- 7. Chapra. S.C., and Canale. R.P, "Numerical Methods for Engineers", 5th Edition, Tata McGraw Hill, New Delhi, 2007.
- 8. Gerald. C.F., and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.

- 1. Rovert V. hong, "Introduction to Statistics", Macmillan Pub. Co.
- 2. S.D. Conte, & Cari De Boor, "Elementary Numerical Analysis", Mc Graw Hill.
- 3. Anderson, Sweeney, and Williams, Statistics for Business and Economics, Seventh Edition, West Publishing Co., available at Hammes Bookstore.

SUBJECT CODE: PEPE-108 SUBJECT NAME: CRYOGENIC MANUFACTURING

Programme: B. Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 6	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Elective	
Additional Material Allowed in ESE: Scientific Calculator		

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes COS		
1	Explain cryogenic processes in details		
2	Understand the processes of cryogenic liquid production and their storage		
3	Describe the effect of cryogenic manufacturing on material properties.		
4	Familiarize with various cryogenic refrigeration cycles.		
5	Understand type of cryogenic insulation used during cryogenic manufacturing		
6	Utilize cryogenic manufacturing for various applications.		

Detailed Contents:

S.No.	S.No. Title Content details Cre				
		(Part A)	Hrs.		
Unit 1	Introduction to cryogenic manufacturing	Historical perspective and origin of cryogenic material manufacturing, Need of cryogenic manufacturing, Types of low temperature treatment and processors, Advantages and disadvantages of cryogenic manufacturing, applications of cryogenic manufacturing	6		
Unit 2	Cryogenic liquid	Definition and its types, storing cryogenic liquids, various cryogenic fluids and their properties, health, chemical and flammability hazards of cryogenic liquids, liquid nitrogen production, liquid helium production, cryogenic oxygen plant.	6		
Unit 3	Material behavior in cryogenic manufacturing	Behavior and performance of materials during cryogenic manufacturing, effect on material properties (mechanical, thermal, and electrical,Super conductivity), effect on formability of materials, impact of cryogenic processing on product performance.	7		
Unit 4	Cryogenic processes	Cryogenic machining, cryogenic grinding, Cryogenic deflashing, Cryogenic deburring, Cryogenic rolling, cryogenic cooling systems: Materials, machines and tooling, cryogenic machining of elastomers, economic aspects of cryogenic processing.	7		
		Part B			
Unit 5	Cryogenic refrigeration	Principle and Methods of production of low temperature and their analysis: Joule Thomson Expansion, Cascade processes, cold gas refrigerators, Linde, Hampson cycles, Claude and cascaded systems, magnetic cooling, Stirling Cycle Cryocoolers, Gifford single volume refrigerator, Pulse tube refrigerators	6		
Unit 6	Cryogenic insulations	Various types such as expanded foams, gas filled& fibrous insulation, vacuum insulation, evacuated powder& fibrous insulation, opacified powder insulation, multi layer insulation, comparison of performance of various insulations.	4		
Unit 7	Applications of cryogenic engineering	Super conductive devices such as bearings, motors, cryotrons, magnets, D.C. transformers, tunnel diodes, space technology, space simulation, cryogenics in biology and medicine, food preservation and industrial applications, nuclear propulsions, chemical propulsions	6		

Text Books:

4. A.R. Jha, "Cryogenic Technology and applications", Elsevier.

5. S.S. Thipse, "Cryogenics: A Textbook", Alpha Science

6. Mamata Mukhopadhyay, "Fundamentals of Cryogenic Engineering", PHI Learning Pvt.Ltd.

- R.F. Barron, "Cryogenic Systems", McGraw, Hill.
 R.B. Scott, "Cryogenic Engineering", D. Van Nostrand

Subject Code: PEPE-129 Subject Name: Plant Layout & Material Handling

Subject Name. I fant Layout & Matchai Handning			
Programme: B.Tech. (PE)	L: 4 T: 0 P: 0		
Semester: 6	Teaching Hours: 48		
Theory/Practical: Theory	Credits: 4		
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems:25%		
External Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total Marks: 100	Status: Professional Elective		
Additional Material Allowed in ESE: Scientific Calculator			

On completion of the course, the student will have the ability to:

	in completion of the course, the student will have the ability to:				
CO#	Course Outcomes(CO)				
1	Student will be able to understand the types of layouts.				
2	Student will be able to understand the principles of site selections				
3	Student will be able to understand the type of building types and structures				
4	Student will be able to understand the concepts of different material handling processes				
5	Student will be able to understand the able to safety aspects associated with layout and material handling				
6	Student will be able to analyze the material handling parameters as per the layout requirements				

Detailed Contents

Sr. No	Title	Content Detail	Credit Hours
	·	Part A	
Unit 1	Introduction To Plant	Types of manufacturing processes. Plant Location, influence of location on layout. Classical types of layout, product layout and practical layout. Selection of plant site, Equipments	4
	Design	required for plant operation, Capacity, serviceability and flexibility and analysis in selection of equipments, space requirements, and man power requirements. Advantages and Limitations of different layouts	
Unit 2	Planning The Layout	Collecting of data for determining and diagramming – the flow of material, visualizing possible layout and evaluating alternative layouts. Storage, plant servicing and office layout. Line balancing, various operational research techniques for balancing of assembly lines fabrication lines balancing. Tools and techniques for developing layout, process chart, flow diagram, and string diagram, template and scale models machine data.	6
Unit 3	Heuristics For Plant Layout	ALDEP, CORELAP, CRAFT, Group Layout, Fixed position layout, Quadratic assignment model. Branch and bound method.	7
Unit 4	Industrial Building And Utilities	Centralized electrical, pneumatic water line systems. Types of buildings, lighting, heating, air conditioning and ventilation utilities, planning and maintenance, waste handling, statutory requirements. Packing and storage materials Safety in various shops, safety in critical storage area, storage explosive material, gases and inflammable liquids.	7
	•	Part B	
Unit 5	Importance Of Materials Handling	Principles of material handling, analysis of material handling problem, Importance and scope. Planning, operating and costing Principles, types of material handling systems, factors influencing their choice.	4
Unit 6	Material Handling Factors	Materials, containers frequency and duration, distance, speed, environment labour and equipment. Production Control and materials handling Types of material control. Production planning, scheduling, and dispatching as related to materials handling.	6
Unit 7	Material Handling Equipment	Belt Carrier, chain and cable roller, Screw vibrating and reciprocating pneumatic tubes, load transferring, machines, air operated, and hydraulic devices. Cranes Elevators and Hoists, Industrial Trucks, dump trucks, overhead trackage system. Pallets and containers.	7
Unit 8	Analysis Of Material Handling	Motion analysis, flow analysis, graphic analysis, safety analysis, equipment cost analysis, pillarization analysis, analysis of operation, material handling surveys.	7

Text Books:

1. James .M. Apple, "Plant Layout and Material handling", John Woley & Sons, N. York 1995

- James .M. Moore, "Plant Layout and Design", MacMillan and Co. 1971 2.
- Richard Muther and Lee Hales, "Systematic Layout Planning", Management and Industrial Research Books 4th Edition 2015
 R. B. Chowdhary, "Plant Layout & Material Handling", Khanna Publishers. 2nd Edition 2016
 S. C. Sharma, Plant Layout and Material Handling, Khanna publishers. 3rd Edition 2000

- Richard Muther, Practical Plant layout, McGraw Hill Book Company, New York 1956 6.
- G.K Aggarwal, Plant layout & material handling, Jain Publishers, New Delhi 2017 7.

- 1. James A. Tompkins and John A White "Facilities Planning", John Wiley & Sons, New York. 4th edition 2010
- 2. Francis White, Facility Location & Layout, PHI, New Delhi 1991
- 3. Shubin J A, Plant layout, P H I publications.1965
- 4. Berman. Ya, Material handling, Mir publishers.1980
- 5. S.C. Sharma, Material Management and Material Handling, Khanna Publishers. 1995

Subject Code: PEPE-130 Subject Name: Productivity Management

		Subject Name: Productivity Management	
~	amme: B.Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 6		Teaching Hours: 48	
	y/Practical: Theory	Credits: 4	
	al Marks: 40	Percentage of Numerical/Design/Programming Problems:25%	
	nal Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total I	Marks: 100	Status: Professional Elective	
Addi	tional Material Allow	ed in ESE: Scientific Calculator	
On co	ompletion of the cour	se, the student will have the ability to:	
CO#		Course Outcomes(CO)	
1	Understand the dynamic	nics of productivity measurement in manufacturing and service sectors.	
2	Understand different	productivity measurement models.	
3	Understand the salier	t characteristics and limitations of different productivity measurement models.	
4	Understand the diffe	rences among small, medium and large manufacturing enterprises as well as service sect	ors in the
	context of productivi	ty measurement.	
5	Will be able to evaluate	ate the productivity of an organization	
6		ment green productivity to help the human race	
Detai	iled Contents		
Sr. N		Content Detail	Credit
			Hours
		Part A	
Unit	1 Introduction	Definition of Productivity, Productivity and performance, production, benefit cycle,	4
		Industrial productivity, scope of productivity management, factors affecting productivity,	
		different approaches to productivity. Macro and Micro factors of productivity –	
		Dynamics of Productivity, Productivity Cycle	
Unit	2 Systems	Conceptual frame work, Management by Objectives (MBO), Performance Objectivized	6
c int	Approach To	Productivity (POP) – Methodology and application to manufacturing and service sector.	Ū
	Productivity		
	Measurement		
	measur ement		
Unit	3 Productivity	Need of productivity measurement, Short term and long term productivity planning	6
Cint	Measurement	Productivity measurement approaches, total & partial productivity, productivity	Ū
	ivicusui ement	measurement models and their comparison, productivity measurement parameters,	
		productivity measurement indices, work study and productivity.	
Unit	4 Productivity	Causes for productivity changes, productivity models, applications of different planning	7
Ome	Planning	models, productivity planning executives and their responsibilities.	,
	Tianning	Part B	
Unit	5 Productivity	Productivity Measurement in Small Size, Medium Size and in Large size Organization	7
	•	considering KPA's, performance objectives and productivity indices calculations Need	,
	Manufacturing	for measuring productivity in service sector, Productivity of an R & D System &	
1	Sector and	Educational institution, methodology.	
	Service Sector	Educational institution, methodology.	
Unit		Productivity evaluation, productivity Evaluation models, evaluation tree model,	6
	Evaluation	successive, time period models, applications of different evaluation models, role of	U
	L'aiuativii	evaluating executives and their responsibilities.	
Unit	7 Productivity	Causes of poor productivity, remedies of Poor productivity, methods to improve	6
	Improvement	productivity, design of productivity improvement programs. Productivity improvement	U
	improvement	approaches, Principles, Techniques Productivity audit and control. Productivity	
		measurement in International, National and Industrial level Total productivity Model	
I.I.a.it	8 Croop	* *	6
Unit		Green productivity and ways to measure green productivity, Feedback tools and system, Integrated Management of Productivity Activities (IMPACT Model) Productivity	U
1	Productivity	Integrated Management of Productivity Activities (IMPACT Model), Productivity	
	D 1	Indicators, Integrated Approach to Productivity Measurement.	
Text	Books:		

- 1. Prem Vrat, Sardana, G. D. and Sahay, B. S, Productivity Management, A Systems Approach, Narosa Publishing House, New Delhi, 1998.
- 2. Sumanth, David J., Productivity Engineering and Management, Tata McGraw Hill, New Delhi, 1990.
- 3. Hassan M.Z.P., "Productivity Models", A&N Printing, Chicago
- 4. Goodwin H.F., "Improvement in Productivity", Wiley, New York
- 5. Mali. P., "Improving Total Productivity", Wiley, New York 1978

- 6. Srinivas Gondhalekar and Uday Salunkhe Productivity Techniques, , Himalaya Publishing House 2007
- 7. Gerard Leone and Richard D. Rahn, Productivity Techniques, Jaico Book House
- 8. Sawhney S.C., Productivity Management: Concepts and Techniques, Tata McGraw Hill 1991

- 1. Productivity Measurement in the Service Sector, Asian Productivity Organization (APO), Tokyo, 2001.
- 2. Productivity Measurement in the Retail and Food Industry, Asian Productivity Organization (APO), Tokyo, 2012.
- 3. Measuring Productivity, OECD Manual, Measurement of Aggregate and Industry Level Productivity Growth,
- 4. A Guide to Productivity Measurement, SPRING Singapore, 2011
- 5. A Measurement Guide to Green Productivity, 50 Powerful Tools to Grow your Triple Bottom Line, Asian Productivity Organization (APO), Tokyo, 2003.
- 6. International Labour Office, "Productivity and Quality Management", "International Labour Organization
- 7. Sudit, Ephraim F., "Productivity Based Management", Springer 1984

Subject Code: PEPE-131 Subject Name: Project Management

Subject Name. 1 Toject Management				
Programme: B.Tech. (PE)		L: 4 T: 0 P: 0		
Semes	ter: 6	Teaching Hours: 48		
Theory	y/Practical: Theory	Credits: 4		
Intern	al Marks: 40	Percentage of Numerical/Design/Programming Problems:20%		
Extern	al Marks: 60	Duration of End Semester Exam(ESE): 3hr		
Total I	Marks: 100	Status: Professional Elective		
Additional Material Allowed in ESE: Scientific Calculator				
On completion of the course, the student will have the ability to:				
CO#		Course Outcomes(CO)		
1	Understand the dynamics	of project management in manufacturing and service sectors.		
2	Will be able to identify and select the best project			
3	Understand the salient characteristics of Organizational Issues			
4	Will be able to evaluate the project networks and project durations.			
5	Will be able to evaluate risk analysis of an organization and projects			
6	Will be able to evaluate pr	oject quality and purchase mechanisms		

Detailed Contents

Sr. No	Title	Content Detail	Credi Hours
		Part A	
Unit 1	Basics of Project Management	Areas and Processes, The Project Life Cycle, The Project Manager (PM), Phases of Project Management Life Cycle, Project Management Processes, Impact of Delays in Project Completions, Essentials of Project Management Philosophy, Project Management Principles	4
Unit 2	Project Identification, Selection & Planning	:Introduction, Project Identification Process, Project Initiation, Pre-Feasibility Study, Feasibility Studies, Project Break-even point, Project Planning, Need of Project Planning, Project Life Cycle, Project Planning Process, Work Breakdown Structure (WBS)	6
Unit 3	Organizational Structure and Organizational Issues:	Introduction, Concept of Organizational Structure, Roles and Responsibilities of Project Leader, Relationship between Project Manager and Line Manager, Leadership Styles for Project Managers, Conflict Resolution, Team Management and Diversity Management, Change management	6
Unit 4	Project Network	Introduction, Development of Project Network, Time Estimation, Determination of the Critical Path, PERT Model, Measures of variability, CPM Model, Network Cost System, Resource Allocation, Scheduling, Project Cost Estimate and Budgets, Cost Forecasts	7
		Part B	
Unit 5	Project Risk Management:	Introduction, Risk, Risk Management, Role of Risk Management in Overall Project Management, Steps in Risk Management, Risk Identification, Risk Analysis, Reducing Risks	7
Unit 6	Project Quality, Purchase & Value Engineering	Introduction, Quality, Quality Concepts, Value Engineering, Project Management Information System (PMIS), Planning of PMIS, Design of PMIS, Purchase Cycle,	6
Unit 7	Project Performance Measurement, Evaluation and Execution:	Introduction, Performance Measurement, Productivity, Project Performance Evaluation, Benefits and Challenges of Performance Measurement and Evaluation, Controlling the Projects, Project Execution, Project Control Process, Purpose of Project Execution and Control	6
Unit 8	Project Close- out, Termination, Follow-up and PM Software:	Introduction, Project Close-out, Steps for Closing the Project, Project Termination, Project Follow-up, Advantages of Using Project Management Software, Common Features Available In Most of the Project Management Software, Illustration	6

1. K. Nagarajan Project Management New Age International, 2004

- 2. K. Nagarajan Elements of Project Management New Age International, 2005
- 3. Gupta Rajeev M. Project Management PHI Learning, 2011
- 4. R. B. Khanna Project Management PHI Learning Pvt. Ltd., 2011
- 5. Subhash Chandra Das Project Management and Control PHI Learning
- 6. R. C. Mishra Modern Project Management New Age International (P) Limited, Publishers, 2006
- Erik Larson & Clifford Gray Project Management: The Managerial Process 7th Edition McGraw-Hill Education; 7th edition 2017
- 8. Joseph Heagney Fundamentals of Project Management 2016 AMACOM; 5th edition

- 1. A Guide to the Project Management Body of Knowledge 6th Edition, Project Management Institute
- 2. <u>Harold Kerzner</u> Project Management: A Systems Approach to Planning, Scheduling, and Controlling 11th Edition Wiley 2013
- 3. Paul Roberts Guide to Project Management: Getting it right and achieving lasting benefit 2013 Wiley; 2nd edition 2013
- 4. Terry Schmidt Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Wiley 2009:

SUBJECT CODE: PEPE-132 SUBJECT NAME: ESTIMATING AND COSTING

Programme: B. Tech. (PE)	L: 3 T: 0 P: 0
Semester: 6 th	Teaching Hours: 48
Theory/Practical: Theory	Credits: 4
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 50%
External Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total Marks: 100	Status: Elective

Additional Material Allowed in ESE: Scientific Calculator

On completion of the course, the student will have the ability to:

CO#.	Course Outcomes COS		
1	Student will be able to estimates the projects		
2	Students will be able to calculate the Inventory cost of an organization		
3	Students will be able to calculate the Material and Labor cost of an organization		
4	Students will be able to calculate the Break Even Point of an organization and depreciation value of products of		
	organization		
5	Student will be able to evaluate the cost of workshop operations and process		
6	Student will be able to evaluate design and develop budgets and contracts for an organization		

Detailed Contents:

S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Estimating	Estimating: Importance and aim, objectives, functions, organization of Estimating department, Estimating Procedure, Constituents of Estimation, Difference between Estimating and Costing, Different types, Methods adopted for estimation, Use of Standard data, parameter estimating, statistical estimating, feedback systems, importance, purpose and functions of estimating, Mensuration.	5
Unit 2	Costing:	Elements of Costs, Costing methodology for raw materials, Products and Services, Nature of Costs Direct, Traceable and Non traceable, Wastage. Determining of Cost of raw materials, manufactured products, labor, indirect expenses, and methods of overhead allocation. Costing-Definition, aims, procedure for Costing, types of costs, Costing controls, Overheads, Profit and Pricing Policy.	6
Unit 3	Inventory Control	Cost factors in inventory control, inventory carrying cost, ordering cost, EOQ, lead time, safety stock, reorder level, minimum level, max. level, Types of inventory control systems- Perpetual inventory control system, ABC method etc. Valuation of materials issued from store- FIFO, LIFO, etc.	6
Unit 4	Material & Labor Costing	Introduction, factors influencing wage rate, methods of wage payments for direct and indirect labour time wage system, piece rate system, Wage incentives: different plans, Material – Direct material, indirect material -Labour direct, indirect labour costs Expenses – direct, indirect expenses Classification of expenses Components of cost Determination of selling price	6
	•	Part B	•
Unit 5	Depreciation & Break Even Analysis	Introduction, purpose, methods for calculating depreciation-straight line method, Diminishing balance method, sum of year digit method, machine hour basis method, Break even analysis: Introduction, assumptions in break even analysis, important terms and definitions, calculation of breakeven point, advantages and limitations.	6
Unit 6	Estimation In Workshop Cost	Calculation of volume of machined component operation time calculation for turning, knurling, facing, drilling, boring, reaming, threading, milling, tapping, shaping, cutting, various grinding operations, planning etc. Pattern cost estimation, estimation of foundry costs forging process estimation procedure, estimating losses and time. Welding Preparation cost, Actual welding cost, finishing on cost, power cost, factors affecting welding cost. Gas cutting cost Sheet Metal Work: Operations in sheet metal work, joints, blank layout and size, estimation of time, capacity and types of processes , Labor cost Material cost Overhead Cost Maintenance Cost.	7
Unit 7	Budgetory And Engineering Contracts	Budget, objectives, classification of budgeting, Budgetory control, securing flexibilities of budgeting, limitation of budget. Operational and capital budgets, Cash flow schedules, Estimating cost, preparing an annual budget for the Engg. Department. Introduction, Types of contracts and similarities. Terms of payments, firm price contracts, cost reimbursable contracts, Target of cost contracts, schedule of rate contracts, bill of quantities contracts, compound contracts, contract policy, legal rights and commercial interests	6
Unit 8	Process	Process & Job Costing Characteristics, Principles, Procedure for Process costing. Wages-types,	6

	Costing &	Incentives-types, Budget-Types, Accounting terminology like, book value, Net Present Value,	
	Accounting	Work in progress, Gross Domestic Product (GDP), balance sheet, Tendering manual tendering	1
		and e-tendering.	1

Text Books:

- 1. Sinha B.P., "Mechanical Estimating and Costing", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1995.
- 2. Banga T.R. and Sharma S.C., "Mechanical Estimating and Costing", Khanna Publishers, Delhi, 2001.
- 3. Sharma S.K. & Sharma Savita, "industrial Engineering & Operations management", Kataria publishers, 2010.
- 4. Kesoram R., "Process Planning & Cost Estimation", New Age International Pub. New Delhi, 1995.
- 5. M.Adithan Process planning & cost estimation New age International

- 1. Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai & Publication, 2007.
- 2. Handbook of Engineering Management- Edited by Dennis Lock, Butterwork & Heinemanky Ltd
- 3. T.R.Banga and S.C.Sharma Industrial Organisation and Engineering Economics Khanna publishers
- 4. Singh and Khan Mechanical costing and estimation. Khanna Publishers

SUBJECT CODE: PEPE-153 SUBJECT NAME: ADVANCE ENGINEERING MATERIALS

Sebser 1 Marie: ind Villee El (OII) EERING MATTEMALS		
Programme: B. Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 6	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil	
External Marks: 60	Duration of End Semester Exam(ESE): 3hr	
Total Marks: 100	Status: Elective	
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:		
CO#. Course Outcomes CO	DS	
1 Apply knowledge of M	Acchanical Material Properties in designing specific products and experiments	

1	Apply knowledge of Mechanical Material Properties in designing specific products and experiments
2	Able to use Bio Material for the manufacturing of better human friendly product
3	Apply knowledge of ceramics properties in designing specific products and experiments
4	Able to make better utilization of electrical and electronics materials for designing new products
5	Able to use Nano Materials for the betterment of human race
6	Able to know about the safety and dangers of Nuclear Materials

Detailed Contents:

S.No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Bio	Introduction of Biomaterials, Types of Biomaterials, Bioactive Ceramics, Bioactive Glass,	7
	Materials	Biocompatibility Collagen Hydrogel Peptide Protein Stem Cells, Nontoxicity, Synthetic Biomaterials, Immunomodulation Biomaterials, Properties of Biomaterials, Application of Biomaterials	
Unit 2	Ceramics	Introduction Of Ceramics, Types Of Ceramics, Advanced Engineering Ceramics Crystalline Ceramics, Noncrystalline Ceramics, Properties Of Ceramics Refractory, Hardness, Toughness, Dielectric Constant, <u>Ceramography</u> Mechanical Properties, Electrical Properties, Thermal Properties Optical Properties Manufacturing Of Ceramics. Application of Ceramics	7
Unit 3	Electrical &	Introduction of Introduction of Electronic & Optical Semiconductors, Conducting Materials, Semi-conducting Materials, Insulating materials, Natural insulating materials, Magnetic	5
	Electronics	Materials, Soft Magnetic Materials, Special Materials properties and application of Electrical &	
	Materials	Electronics Materials	
Unit 4	Mechanical	Introduction to Mechanical Alloys Material, types of Alloys, Methods of Alloying Properties of	5
	Alloys	Alloys and Application of Alloys	
		Part B	
Unit 5	Polymers & Plastics	Introduction of Polymers & Plastic, difference between polymers and plastics, types and classification of polymers and plastics, degree of crystallinity, tacticity, Polymer chirality Thermal Electrical Optical and Mechanical Properties of Polymers and Plastics, Applications of Polymers and Plastics, Methods of Manufacturing of Polymers	7
Unit 6	Nano Materials	Introduction Of Nano Materials, Sources Of Nano Materials, Engineered, Incidental And Natural, Types Of Nano Materials, Synthesis Of Nano Materials, Characterization Of Nano Materials Properties Of Nano Materials And Application Of Nano Materials	7
Unit 7	Nuclear Materials	Introduction Of Nuclear Materials Types Of Nuclear Materials, Uranium, Plutonium, And Thorium, Enriched Uranium (U-235), Uranium-233, And Plutonium-239, Safety Aspects For Using Nuclear Materials Applications Of Nuclear Materials.	5
Unit 8	Special Materials	Light Materials, Carbon Materials, Amorphous Materials High-Temperature Superconductivity Materials, Meta Materials, Carbon Nano Tubes, Quantum Dots, Silicene, Super Alloy, Synthetic Diamond	5

Text Books:

1. SK Bhattacharya, Electrical and Electronic Engineering Materials by Khanna Publishers, New Delhi

2. Grover and Jamwal ,Electronic Components and Materials Dhanpat Rai and Co., New Delhi

3. C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford and Gopinath Mani "Introduction to Biomaterials: Basic Theory with Engineering Applications", Cambridge University Press 2013

4. Joyce Y. Wong, Joseph D. Bronzino, and Donald R. Peterson "Biomaterials: Principles and Practices" CRC Press 2012

5. Joshua Pelleg Mechanical Properties of Ceramics Springer, 2014

6. Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby and Butterworth-Heinemann "Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects" 2009

7. K. Linga Murty and Indrajit Charit "An Introduction to Nuclear Materials: Fundamentals and Applications" Wiley VCH 2012

- SM Dhir Electronic Components and Materials by, Tata Mc Graw Hill, New Delhi
 Marc André Meyers and Po-Yu Chen "Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials" Cambridge University Press 2014
- 3. Karl Whittle "Nuclear Materials Science" IOP Publishing Ltd 2016

SUBJECT CODE: PEPE-154 SUBJECT NAME: ADVANCE CERAMICS

Programme: B.Tech. (PE)	L: 4 T: 0 P: 0	
Semester: 6	Teaching Hours: 48	
Theory/Practical: Theory	Credits: 4	
Internal Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%	
External Marks: 60	Duration of End Semester Exam (ESE): 3hr	
Total Marks: 100	Status: Professional Core	
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:		
CO# Course Outcomes COS		
1 Knowledge of the crysta	Knowledge of the crystal structures of a wide range of ceramic materials.	
2 Introductory knowledge	Introductory knowledge on the processing of bulk ceramics	

3 Understand the properties of ceramics and their structural origin.

4 Given a ceramic component be able to calculate its intrinsic and extrinsic defect populations.

5 Knowledge of the structure of clays, minerals, and glasses

6 Applications of ceramic materials in structural, biological and electrical components.

Detailed Contents

Part A			
S. No.	Title	Content details (Part A)	Credit Hrs.
Unit 1	Introduction	Definition & scope of ceramics and ceramic materials, classification of ceramic materials – conventional and advanced ceramics.	4
Unit 2	Refractories	Definition of refractory, properties of refractories, classification of refractory, manufacturing process, basic areas of applications.	4
Unit 3	Ceramic	Chemistry of ceramics, Silicate ceramics and non, silicate ceramics, Silicate ceramics,	7
	compounds	Non, silicate ceramics. Structural ceramics, Functional ceramics, Introduction to Ceramics and clays	
Unit 4	Materials Selection	Selection of Materials, Introduction, First Stage, Performance Requirements, Functional Requirements, Processability Requirements, Cost, Reliability, Service Conditions, Quantitative Methods, Material Properties, Cost per Unit Property, Ashby's Material Selection ,Computer,Based Selection, Second Stage, Weighted Properties, Digital Logic Method , A Case Study ,Material Performance Requirements ,Initial Selection ,Alternate Solutions, Optimum Solution.	9
		Part B	
Unit 5	Cement &	Introduction, Basic Concrete construction, Fiber, Reinforced Concrete, Carbon and	7
	Concrete	Organic,Based Fibers, Glass Fiber,Reinforced Concrete, Current Research Topics, Refractory Concretes.	
Unit 6	New Developmen,ts in Ceramic and Refractory Fields	Introduction, New Developments in the Ceramic Field, Production, Oxide Ceramics, Non,oxide Ceramics, Ceramic,Based Composites, Firing, Firing Environments, Finishing, Future Developments, New Developments in the Refractory Field, Applications of Monolithic Refractories, Ferrous Metallurgy, Petrochemical Applications, Cement Plant Applications, Incinerators, Nonferrous Metallurgy.	9
Unit 7	Defects in Ceramic	Defects in Ceramics, Introduction, Point Defects, Stoichiometric Defects, Nonstoichiometric Defects, Extrinsic Defects, Point Defects and Their Notation, Interstitial Atoms, Misplaced Atoms, Free Electrons, Electron Holes, Kroger–Vink Notation, Defect Reactions, Stoichiometric Defect Reactions, Nonstoichiometric Defects, Extrinsic Defects, Electronic Defects, Linear Defects, Planar Defects, Grain Boundary Structure, Impurity Segregation at Grain Boundaries	8
Text Bor	Jze		

Text Books

1. Michel W Barsoum, "Fundamentals of Ceramics", Institute of Physics Publishing, The Institute of Physics, London

2. W. D. Kingery, H. K. Brown and D. R. Uhlmann "Introduction to Ceramics", John Wiley & Sons.

- 3. V. V. Vargin, "Technology of enamels", MacLaren Publication 1967.
- 4. W E Worrall, "A book of ceramic raw materials", Elsevier Science Publication.
- 5. A. R. West, "Solid State Chemistry and its Applications", John Wiley & Sons (Asia) Pte. Ltd.
- 6. A. O. Surendranathan, "An Introduction to Ceramics and Refractories", Taylor & Francis Group, CRC Press.

- 1. Felix Singer, "A book of industrial ceramics", Springer Publication.
- 2. J. H. Chester "Refractories", Maney Publishing.
- 3. William D. Callister, "Materials Science and Engineering, An Introduction", John Wiley & Sons, Inc., New York.
- 4. James F. Shackelford, Robert H. Doremus, "Ceramic and Glass Materials", Springer.

SUBJECT CODE: PEPE-155 SUBJECT NAME: MATERIAL PROCESSING

Programme: B.Tech.(PE)		L: 4 T: 0 P: 0
Semes	ter: 6	Teaching Hours: 48
Theor	y/Practical: Theory	Credits: 4
Intern	al Marks: 40	Percentage of Numerical/Design/Programming Problems: 10%
Extern	nal Marks: 60	Duration of End Semester Exam (ESE): 3hr
Total I	Total Marks: 100 Status: Professional Core	
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:		
CO#	Course Outcomes COS	
1	Able to understand and	apply the concept of solidification in real life problems
2	Able to understand and	apply the concept of evaporation in real life problems
3	Able to process the powder metallurgy in industrial organizations	
4	Able to synthesis the all	oys for the betterment of human race
5	Able to utilize the thin f	ilm deposition method of processing of materials
6	Able to synthesis the bid	plogical materials or alloys for the betterment of human race

Detailed Contents

Part A			
S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Solidification	Nucleation and growth, Homogeneous and heterogeneous nucleation, Interface	6
	from Liquid and	stability, Development of micro structure, Faceted and no faceted structure, Super	
	Vapor Phase	cooling, Equilibrium phase diagrams, Eutectic and peritectic solidifications and their microstructures, Foundry techniques such as sand casting, Permanent mould	
		casting, Investment casting and die casting, Casting defects and their inspection.	
Unit 2	Evaporation,	Evaporation, precipitation, Solution growth, Nucleation, Rate of crystallization,	6
	1	Superstaturation, Top seeded solution growth, sol-gel techniques, high	
		temperature solution, Hydrothermal, Solvothermal methods, Ammonothermal	
		method, Glycothermal, Melt methods- super cooling, Czechorlskii methods, Skull	
Unit 3	Ceramic/	melting Synthesis of common ceramic powders such as Al2O3, ZrO2, Si3N4, and SiC,	7
Unit 5	Powder	Powder characterization, Binders, Lubricants, Deflocculates and flocculants as	/
	Processing	processing aids, shaping techniques such as powder compaction, Extrusion,	
	Trocessing	Injection moldings, Slip casting, Solid state and liquid phase sintering.	
		Introduction to Powder Processing; Powder characterization, Powder Fabrication;	
		Powder Consolidation, Powder compaction; Sintering	
Unit 4	Synthesis of	Synthesis of alloys, Heat treatment of high carbon steels and Al- alloys, Ageing of	7
	Alloys	Aluminum alloys, Electro deposition, plating and refining, Anodizing, Surface	
		modification using fluidized bed. Part B	
Unit 5	Metal Working	Stress and Strain Analysis and Yield Criteria, Plastic Instability and	7
Omt 5	Wetar Working	Superplasticity, Mechanics of metal working, Friction and Formability and Case	'
		Studies.	
Unit 6	Thin film	Introduction to Vacuum Technology; PVD, Introduction to Plasma, PVD-	7
	deposition	Sputtering, Chemical Vapor Deposition, Special techniques and applications.	
Unit 7	Biological	Biological synthesis, Biomimetic method, bacterial synthesis of nanoparticles;	8
	Synthesis	Electrochemistry - solvent selection, apparatus, deposition, growth of thin films,	
		coatings, examples; Multi-energy processing - Mechanochemical; Sonochemical;	
		Photochemical; Biochemical, Microbial, Organic synthesis. Growth of organic crystals.	
Toyt Boo	ļ	crystais.	

Text Books

- 1. R.A. Laudise Growth of Single Crystals, Prentice-Hall (1973).
- 2. Byrappa, R. Fornari, T. Ohachi, H. Klapper, Growth and Characterization of Technologically Important Crystals, K Allied Sciences, New Delhi (2003).
- 3. Chalmner, B., Principles of Solidification, Wiley 1977
- 4. Degarmo, E.P., Black, J.T. Kosher R.A, Materials and Processing in Manufacturing, PHI 1986
- 5. Fleming, M.C., Solidification Processing, McGraw Hill 1974
- 6. Richerson, B.W., Modern Ceramic Engineering: Properties, Processing and Use in Design, Marcel Dekker 1983.
- 7. Brian Cantor, K. O'Reilly Solidification and Casting, IOP Publications, 2003

- 8. George E. Totten, Hong Liang.Surface Modification and Mechanisms: Friction, Stress and Reaction Engineering, Marcel Dekker, Inc., 2005
- 9. A. Upadhyaya, G.S. Upadhyaya, Powder Muetallurgy: Science Technology and Materials, 2011
- 10. G.E. Dieter, Mechanical Metallurgy, McGraw Hill, Inc., London, UK, 1992.

- 1. Martin, D.H. & Jones, Polymer Processing, Chapman and Hall1989
- 2. Springer Handbook of Crystal Growth by Springer 2010
- 3. Springer Handbook of Nanotechnology2nd Edition by Springer 2009
- 4. K. Byrappa and T. Ohachi, Handbook of Crystal Growth, Springer-Verlag 2003
- 5. S. H. Avner Introduction of Physical Metallurgy, McGraw Hill, 1987-.
- 6. W. Kurz and D.J. Fisher, Fundamentals of Solidification, CRC Press, 1998.

SUBJECT CODE: PEPE-156 SUBJECT NAME: AERO SPACE MATERIALS

		SUBJECT NAME: AERO SPACE MATERIALS	
	me: B. Tech. (PE)	L: 3 T: 0 P: 0	
Semester: 6 th		Teaching Hours: 48	
	Practical: Theory	Credits: 4	
Internal	Marks: 40	Percentage of Numerical/Design/Programming Problems: Nil	
External	xternal Marks: 60 Duration of End Semester Exam(ESE): 3hr		
	Fotal Marks: 100 Status: Elective		
Addition	al Material Allowe	d in ESE: Scientific Calculator	
		e, the student will have the ability to:	
CO#.	Course Outcomes		
1		te aircraft materials for a given application	
2		eat Treatment processes of aircraft metals and alloys	
3		lge about the mechanical behavior of different aircraft & aerospace materials.	
4		ations of Aluminum alloys, Ceramics and Composites Materials.	
5		rties of super alloys, ablative materials and high energy material.	
6		al corrosion process and apply prevention technique.	
	Contents:		
S. No.	Title	Content details	Credit
		(Part A)	Hrs.
Unit 1	Introduction to	General properties of materials, Definition of terms, Requirements of aircraft materials,	4
	Aircraft Materials	Testing of aircraft materials, Inspection methods, Application and trends in usage in aircraft	
		structures and engines, Selection of materials for use in aircraft.	
Unit 2	Super Alloys	General introduction to super alloys, Nickel based super alloys, Cobalt based super alloys,	6
		and Iron based super alloys, manufacturing processes associated with super alloys, Heat	
	~ .	treatment and surface treatment of super alloys.	
Unit 3	Composite	Definition and comparison of composites with conventional monolithic materials,	6
	Material	Reinforcing fibers and Matrix materials, Fabrication of composites and quality control	
		aspects, Carbon-Carbon Composites production, properties and applications, inter metallic	
		matrix composites, ablative composites based on polymers, ceramic matrix, metal matrix	
		composites based on aluminum, magnesium, titanium and nickel based composites for engines	
Unit 4	Polymeric	Knowledge and identification of physical characteristics of commonly used polymeric	5
Unit 4	Materials	material: plastics and its categories, properties and applications; commonly used ceramic,	5
	Plastics Ceramics	glass and transparent plastics, properties and applications, adhesives and sealants and their	
	& Glass	applications in aircraft. Ablative Materials Ablation process, ablative materials and	
	a Glubb	applications in aerospace.	
		Part B	
Unit 5	Aircraft Wood,	Classification and properties of wood, Seasoning of wood, Aircraft woods, their properties	5
	Rubber, Fabrics	and applications, Joining processes for wood, Plywood; Characteristics and definition of	
	& Dope and Paint	terminologies pertaining to aircraft fabrics and their applications, Purpose of doping and	
	-	commonly used dopes; Purpose of painting, Types of aircraft paints, Aircraft painting	
		process.	
Unit 6	High Energy	Materials for rockets and missiles. Types of propellants and its general and desirable	5
	Materials	properties, insulating materials for cryogenic engines. Types of solid propellants: Mechanical	
		characterization of solid propellants using uni-axial, strip-biaxial and tubular tests.	
Unit 7	Non-ferrous	Aluminum and its alloys: Types and identification. Properties - Castings - Heat treatment	6
	materials in	processes - Surface treatments. Magnesium and its alloys: Cast and Wrought alloys -	
	aircraft	Aircraft application, features specification, fabrication problems, Special treatments.	
	construction	Titanium and its alloys: Applications, machining, forming, welding and heat treatment,	
T T 1 : 0		Copper Alloys.	-
Unit 8	Ferrous materials	Steels : Plain and low carbon steels , various low alloy steels, aircraft steel specifications,	6
	in aircraft	corrosion and heat resistant steels, structural applications. Maraging Steels: Properties and	
TT •/ A	construction	Applications.	_
Unit 9	High	: Classification, production and characteristics, Methods and testing, Determination of	5
	Temperature	mechanical and thermal properties of materials at elevated temperatures, Application of these	
	Materials	materials in Thermal protection systems of Aerospace vehicles, High temperature material	
	Characterization	characterization.	

Text Books:

Titterton G F, Aircraft Material and Processes, English Book Store, New Delhi, 5th edition, 1998,

- 2. H Buhl, Advanced Aerospace Materials, Springer, Berlin 1992,
- 3. Balram Gupta, Aerospace material Vol. 1,2,3,4 ARDB, S Chand & Co, 2009,
- 4. Parker E R, Materials for Missiles and Space, McGraw-Hill Inc., US, 1963,
- C G Krishnadas Nair, Handbook of Aircraft materials, Interline publishers, Bangalore, 1993 Polmear, I. J., Light Alloys: From Traditional Alloys to Nano crystals, 4th ed., Elsevier 2005
- 6. Reed, R. C., The Super alloys: Fundamentals and Applications, Cambridge Univ. Press 2006
- 7. Cantor, B., Assender, H., and Grant, P. (Eds.), Aerospace Materials, CRC Press 2001

- 1. Hill E T, The Materials of Aircraft Construction, Pitman London.
- 2. ASM Speciality Handbook: Heat Resistant Materials, ASM International (1997).
- 3. Kainer, K. U. (Ed.), Metal Matrix Composites, Wiley-VCH (2006).
- 4. Gauthier M. M. (1995). Engineered Materials Handbook Materials Park, OH: ASM International. [Comprehensive overview on engineering plastics, elastomers, composites, ceramics and ceramic matrix composites.]
- 5. Boyer R., Welsch G., and Collings E. W. (1994). Materials Properties Handbook: Titanium
- 6. alloys. Materials Park, OH: ASM International. [Extensive coverage of Ti alloy data.]
- 7. Davis J. R. (1997). ASM Speciality Handbook Heat Resistant Materials. Materials Park,
- 8. OH: ASM International. [Comprehensive overview on super alloys, ferrous and non-ferrous heat-resistant materials.]

Open Professional Elective Subjects

Subject Code: OEPE-101 Subject Name: Industrial Engineering

Subject Name. Industrial Engineering		
Progra	amme: B.Tech. (PE)	L: 3 T: 0 P: 0
Semes	ter: 6	Teaching Hours: 36
Theor	y/Practical: Theory	Credits: 3
Intern	al Marks: 40	Percentage of Numerical/Design/Programming Problems:20%
Extern	nal Marks: 60	Duration of End Semester Exam(ESE): 3hr
Total 1	Marks: 100	Status: Professional Elective
Additional Material Allowed in ESE: Scientific Calculator		
On completion of the course, the student will have the ability to:		
CO#		Course Outcomes(CO)
1	An ability to apply knowle	dge of mathematics, science, and engineering
2	An ability to design and conduct analyze and interpret data.	
3	An ability to plan and design layouts of an organization with an eye on enhancements	
4	An ability to function on multidisciplinary teams.	
5	An ability evaluate the eco	nomic aspects of an organization.
6	An ability to design and in	plement the work and jobs in an organization.

Detailed Contents

Sr. No	Title	Content Detail	Credit Hours
		Part A	
Unit 1	Introduction:	Definition and scope of industrial engineering, role of an Industrial engineer in industry, functions of industrial engineer, qualities of an industrial engineer	3
Unit 2	Plant Layout & Material Handling	Introduction and different types of layouts, Site Selection, Types of Buildings, development of plant layout, types of material handling equipment, relationship of material handling with plant layouts.	4
Unit 3	Work Study- Method Study	Introduction to work study, objectives and procedure for methods analysis, recording techniques, micro motion and macro motion Study, Principles of motion economy, normal work areas and workplace design.	5
Unit 4	Work Study- Work Measurement	Objectives, work measurement techniques – time study, work sampling, predetermined motion time standards (PMTS), Determination of time standards, Observed Time, Basic Time, Normal Time, Rating Factors, allowances, Standard Time. Part B	5
Unit 5	Work Design:	Concepts of job enlargements, job enrichment and job rotation, effective job design considering technological and behavioral factors, Scientific Management, Re Engineering, Gillworth Contribution towards work system design.	5
Unit 6	Ergonomics	Introduction to ergonomics consideration in designing Man Machine systems with special reference to design of displays and controls. Anthropometry, Introduction to Human Metabolism, Application of Ergonomics.	6
Unit 7	Engineering Economics	Introduction to Economics, Flow of Economics, Law of supply and demand, concept of Engineering Economics, Elements of Costs, Depreciation, Maintenance and Replacement Problems	6
Unit 8	Advancement in Industrial Engineering	Introduction to Agile Manufacturing, Supply Chain Management, Value Engineering, TPM, JIT, JOT, Enterprise Resource Planning, 5S, SMED, Kaizen, Root Couse Analysis, Why,Why Analysis & Green Manufacturing	5

Text Books:

- 1. Martand Telsang "Industrial Engineering and Production Management", S. Chand 2006
- 2. Hicks, "Industrial Engg. And Management ", Tata McGraw Hill.
- 3. Suresh Dalela and Saurabh, "Work Study and Ergonomics", Standard Publishers. 1995
- 4. R. Bernes, "Motion and Time Study", John Wiley and sons. 1980
- 5. D. J. Oborne, "Ergonomics at work", John Wiley and sons.1982
- 6. Dwivedi, D.N., Managerial Economics, Vikas Publishing House Pvt. Ltd. 2015
- 7. Chan S. Park "Contemporary Engineering Economics" Prentice Hall of India 6th Edition 2016

- 1. Donald G. Newman and Jerome P. Lavelle "Engineering Economics and Analysis" Oxford University Press 10th Edition 2019
- 2. P.N. Chopra Principles of Economics: (Kalyani Publishers). 2012
- 3. O.P. Khana "Industrial Engineering and Management", Dhanpat Rai Publications 2010
- 4. Salvatore, D. and Srivastav, R., Managerial Economics: Principles and Worldwide Applications, Oxford University Press. 2012
- 5. Work study by ILO Oxford & IBH Publishing Co Pvt. Ltd, 3rd Revised edition edition 2015

Subject Code: OEPE-102 Subject Name: Human Engineering

		Subject Name: Human Engineering	
-	nme: B.Tech. (PE)	L: 3 T: 0 P: 0	
Semeste		Teaching Hours: 36	
	Practical: Theory	Credits: 3	
		Percentage of Numerical/Design/Programming Problems: Nil	
	External Marks: 60 Duration of End Semester Exam(ESE): 3hr		
Total M	arks: 100	Status: Professional Elective	
Addition	nal Material Allowed	in ESE: Scientific Calculator	
On com	pletion of the course,	the student will have the ability to:	
CO#.	•	Course Outcomes COS	
	Student will be able to a	analysis the psychology of human behavior as it relates to workplace safety.	
		identify ergonomic hazards, recommend appropriate controls.	
		analysis the anatomical and mechanical structure of the human body and anthropometry tec	hniques
	vailable to engineers.		1
		analysis the concept of the office workstation & ergonomic design of the office workstation	
		investigate human senses in general and special focus on the vision sense and the auditory s	
		analysis the work related disorders & industrial safety aspects.	ense.
	Contents	anarysis the work related disorders & industrial surety aspects.	
Sr. No	Title	Content Detail	Credit
51.110	THE	Content Detan	Hours
		Part A	110015
Unit 1	Ergonomics	Introduction to Ergonomics, Human Factors and Ergonomics, Application and History	2
Unit I	Engonomics	of Ergonomics, Effectiveness and Cost, Effectiveness of Ergonomics, micro, and	4
		macro, ergonomics.	
Unit 2	Systems of the	Anthropology, Anatomy of Spine and Pelvis Related to Posture, Biomechanics,	4
Unit 2	Human Body	Muscular System, Ergonomics and the Musculoskeletal System, Costs of Back Injuries	4
Unit 3	Muscular Work	Types of Muscular Work, Muscular Fatigue, Types of Muscle Contractions,	5
Unit 5		Measurement of Muscular Strength	5
		Measurement of Muscular Strength	
	Control of Movements		
Unit 4		Introduction, Terminology, Myth of the Average Human, Principles of Universal	5
Unit 4	Anthropometry		5
		Design, Anthropometric Measurements	
TI	Dester of W-1	Part B Work Design Analysis, Designing for Hand Use, Types of Injuries and Disorders,	F
Unit 5	Design of Work		5
	places & Hand	Theories of healthy standing and sitting, free posturing, ergonomics design of the office	
II	Tools Wark Delated	computer workstation, Lifting Guidelines,	4
Unit 6	Work, Related	Types of Work, Related MSD's, Task, related Factors, Personal Risk Factors, Impact on	4
	Disorders	Industry, Ergonomic Program for WMSD's, Industrial Environmental Disorders and	
		Climate and Environmental Disorders, Workplace Stress, Mental Fatigue/Shiftwork	
Unit 7	Inductrial Cafet-	Fatigue Concept of Safety, Accidents & Hazards, Causes & effects of Industrial accidents, Cost	Λ
Unit /	Industrial Safety		4
	& Ergonomics	of Accidents, Impact of Accidents on employees, Physical Hazards, Chemical Hazards,	
		Biological & Ergonomically Hazards, Occupational Health & Toxicology, Occupational	
Um:4 0	Information	Physiology. Martal Workload Massurament, Primary and Sacandary Tack Parformance, Controls	A
Unit 8	Information	Mental Workload Measurement, Primary and Secondary Task Performance, Controls	4
	Ergonomics,	and Displays (Types), Control Layout and Design	
	Controls, &		
T T 1 : 0	Displays		
Unit 9	Human Senses	Body Sensors, Vision Sense, Color Theories, Auditory Sense, Smelling Sense, Tasting	4
		Sense, Touching Sense, Human Body Interaction with Environment, Thermo regulation	
		of Human Body, Working in Polluted Air, Working at High Altitude, Effect of	
L		Vibration on Human Body	
Text Bo	al-a.		

Text Books:

- 1. Bush, P. M. "Ergonomics, Foundational Principles, Applications, and Technologies" CRC Press, Taylor & Francis Group 2011
- 2. Konz S. A. & Johnson S., "Work Design: Industrial Ergonomics". 6th Edition, Holcomb Hathaway Pub., 2004
- 3. Konz SA & Johnson S. "Work Design: Occupational Ergonomics". 7th Edition, Holcomb Hathaway Pub., 2008
- 4. Bhattacharya and McGlothlin, "Occupational Ergonomics, Theory and Applications", Second Edition CRC Press, Taylor & Francis Group 2012

- 5. B. M. Pulat "Fundamentals of Industrial Ergonomics" Waveland Pr. Inc. 1997
- 6. M. I. Khan "Industrial Ergonomics" by PHI Publisher 2010 2nd Edition
- 7. Robert Bridger "Introduction to Human Factors and Ergonomics" CRC Press 2017

- 1. Phillips, C. A. "Human Factors Engineering" 1st edition, Wiley 1999
- 2. Mark R. L. & Steven J. L. "Introduction to Human Factors and Ergonomics for Engineers" CRC Press 2012
- 3. Bridger, Robert S. "Introduction to Ergonomics", 3rd edition, CRC Press, Taylor & Francis Group 2009
- 4. Stack, T., Ostrom, L. T. & Cheryl A. W. "Occupational Ergonomics: A Practical Approach" Wiley, 1 ed. 2016
- 5. Reese C. D. "Occupational Health and Safety Management: A Practical Approach", Third Edition 3rd Edition CRC Press 3 edition 2015